首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Quercetin is a potent antioxidant and has been extensively used as a therapy intervention to prevent age-associated diseases. However, emerging studies showed it can also act as a prooxidant and induce H2O2 under certain conditions. In the current study, our results showed that quercetin contributed to the pathogen resistance in Arabidopsis thaliana (Arabidopsis) in response to the infection of virulent strain Pseudomonas syringae pv. Tomato DC3000 (Pst). Various defense responses, such as H2O2 burst, callose deposition, cell death, PR1 (pathogenesis-related 1) and PAL1 (Phe ammonia-lyase 1) gene expression, have been investigated in quercetin-pretreated Pst-inoculated Arabidopsis Col-0 and there was a strong defensive response in quercetin-pretreated Arabidopsis against virulent Pst. However, with the presence of catalase, the protective effects of quercetin on pathogen resistance to virulent Pst disappeared in Arabidopsis, suggesting that H2O2 may play a key role in plant defense responses. In addition, we confirmed that quercetin did not show any beneficial effect on pathogen-free leaves in Arabidopsis, indicating that pathogen challenge is also required to induce the defense responses in quercetin-pretreated Arabidopsis. Furthermore, strong defense responses have been observed in quercetin-pretreated Arabidopsis mutant jar1, ein2, and abi1-2 under Pst challenge, whereas no protective effect has been observed in quercetin-pretreated Arabidopsis mutant NahG and npr1. These findings indicate that quercetin induces the resistance to Pst in Arabidopsis via H2O2 burst and involvement of SA and NPR1.  相似文献   

2.
3.
Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed uniformly throughout the cell, demonstrating that Cht1 signal peptide functioned. In addition, thanatin(S) and thanatin(S)-FLAG chemically synthesized have both in vitro antimicrobial activities against P. syringae pv. tomato and B. cinerea. So, thanatin(S) is an ideal candidate AMPs for the construction of transgenic crops endowed with a broad-spectrum resistance to phytopathogens and the strategy is feasible to link a signal peptide to the target gene.  相似文献   

4.
5.
6.
Plant cells often use cell surface receptors to sense environmental changes and then transduce external signals via activated signaling pathways to trigger adaptive responses. In Arabidopsis, the receptor-like protein kinase (RLK) gene family contains more than 600 members, and some of these are induced by pathogen infection, suggesting a possible role in plant defense responses. We previously characterized an S-locus RLK (CBRLK1) at the biochemical level. In this study, we examined the physiological function of CBRLK1 in defense responses. CBRLK1 mutant and CBRLK1-overexpressing transgenic plants showed enhanced and reduced resistance against a virulent bacterial pathogen, respectively. The altered pathogen resistances of the mutant and overexpressing transgenic plants were associated with increased and reduced induction of the pathogenesis-related gene PR1, respectively. These results suggest that CBRLK1 plays a negative role in the disease resistance signaling pathway in Arabidopsis.  相似文献   

7.
8.
The barley ROP GTPase HvRACB is a susceptibility factor of barley to powdery mildew caused by the biotrophic fungus Blumeria graminis f.sp. hordei (Bgh). In a recent publication, we reported about a MICROTUBULE-ASSOCIATED ROP GTPASE-ACTIVATING PROTEIN 1 (HvMAGAP1) of barley. Transient-induced gene silencing or overexpression of HvMAGAP1 resulted in enhanced or reduced susceptibility to Bgh, respectively, indicating a possible HvRACB-antagonistic function of HvMAGAP1 in interaction with Bgh. HvMAGAP1 also influences the polarity of cortical microtubules in interaction with Bgh. In AtROPGAP1 and AtROPGAP4, Arabidopsis homologs of HvMAGAP1, knock-out T-DNA insertions enhanced susceptibility of Arabidopsis to the virulent powdery mildew fungus Erysiphe cruciferarum, indicating functions of ROPGAPs in pathogen interaction of monocots and dicots. Here we discuss the role of AtROPGAP1 and AtROPGAP4 in Arabidopsis pathogenesis of powdery mildew in some more detail.  相似文献   

9.
10.
11.
12.
Genome sequence of Arabidopsis thaliana (Arabidopsis) revealed two psbO genes (At5g66570 and At3g50820) which encode two distinct PsbO isoforms: PsbO1 and PsbO2, respectively. To get insights into the function of the PsbO1 and PsbO2 isoforms in Arabidopsis we have performed systematic and comprehensive investigations of the whole photosynthetic electron transfer chain in the T-DNA insertion mutant lines, psbo1 and psbo2.The absence of the PsbO1 isoform and presence of only the PsbO2 isoform in the psbo1 mutant results in (i) malfunction of both the donor and acceptor sides of Photosystem (PS) II and (ii) high sensitivity of PSII centers to photodamage, thus implying the importance of the PsbO1 isoform for proper structure and function of PSII. The presence of only the PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids. These results in modification of the whole electron transfer chain with higher rate of cyclic electron transfer around PSI, faster induction of NPQ and a larger size of the PQ-pool compared to WT, being in line with apparently increased chlororespiration in the psbo1 mutant plants. The presence of only the PsbO1 isoform in the psbo2 mutant did not induce any significant differences in the performance of PSII under standard growth conditions as compared to WT. Nevertheless, under high light illumination, it seems that the presence of also the PsbO2 isoform becomes favourable for efficient repair of the PSII complex.  相似文献   

13.
14.
pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea.  相似文献   

15.
The deposition of callose, a (1,3)-β-glucan cell wall polymer, can play an essential role in the defense response to invading pathogens. We could recently show that Arabidopsis thaliana lines with an overexpression of the callose synthase gene PMR4 gained complete penetration resistance to the adapted powdery mildew Golovinomyces cichoracearum and the non-adapted powdery mildew Blumeria graminis f. sp hordei. The penetration resistance is based on the transport of the callose synthase PMR4 to the site of attempted fungal penetration and the subsequent formation of enlarged callose deposits. The deposits differed in their total diameter comparing both types of powdery mildew infection. In this study, further characterization of these callose deposits revealed that size differences were especially pronounced in the core region of the deposits. This suggests that specific, pathogen-dependent factors exist, which might regulate callose synthase transport to the core region of forming deposits.  相似文献   

16.
17.
Dihydrolipoyl acyltransferase (EC 2.3.1.12), a branched-chain α-ketoacid dehydrogenase E2 subunit (BCE2), catalyzes the transfer of the acyl group from the lipoyl moiety to coenzyme A. However, the role of BCE2 responding to biotic stress in plant is not clear. In this study, we cloned and characterized a BCE2 gene from potato, namely StBCE2, which was previously suggested to be involved in Phytophthora infestans–potato interaction. We found that the expression of StBCE2 was strongly induced by both P. infestans isolate HB09-14-2 and salicylic acid. Besides, when the homolog of StBCE2 in Nicotiana benthamiana named NbBCE2 was silenced, plants showed increased susceptibility to P. infestans and reduced accumulation of hydrogen peroxide (H2O2). Furthermore, we found that a marker gene NbrbohB involved in the production of reactive oxygen species, was also suppressed in NbBCE2-silenced plants. However, silencing of NbBCE2 had no significant effect on the hypersensitive responses trigged by INF1, R3a-AVR3aKI pair or Rpi-vnt1.1-AVR-vnt1.1 pair. Our results suggest that BCE2 is associated with the basal resistance to P. infestans by regulating H2O2 production.  相似文献   

18.
19.
We characterized certain physiological functions of cyanobacterial monoglucosyldiacylglycerol using a Synechocystis sp. PCC 6803 mutant in which the gene for monoglucosyldiacylglycerol synthase had been disrupted and its function complemented by inclusion of an Arabidopsis monogalactosyldiacylglycerol synthase gene. By using this method, we prepared the first viable monoglucosyldiacylglycerol-deficient mutant of cyanobacterium and found that monoglucosyldiacylglycerol is not essential for its growth and photosynthesis under a set of “normal growth conditions” when monogalactosyldiacylglycerol is adequately supplied by the Arabidopsis monogalactosyldiacylglycerol synthase. The mutant had healthy thylakoid membranes and normal pigment content. The membrane lipid composition of the mutant was similar with that of WT except lack of monoglucosyldiacylglycerol and a slight increase in the level of phosphatidylglycerol at both normal and low temperatures. However, the ratio of unsaturated fatty acids in monogalactosyldiacylglycerol and digalactosyldiacylglycerol was reduced in the mutant compared with WT. Although the growth of the mutant was indistinguishable with that of WT at normal growth temperature, it was markedly retarded at low temperature compared with that of WT. Our data indicated the possibility that cyanobacterial monogalactosyldiacylglycerol-synthesis pathway might be required for the adequate unsaturation level of fatty acids in galactolipids and affect the low-temperature sensitivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号