首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
组蛋白变体(histone variant)是常规组蛋白的变异体,在染色质的特定位置或特定生物学事件中替换常规组蛋白,调控染色质结构以及相关生物学过程。组蛋白伴侣(histone chaperone)是指可以结合组蛋白,运送组蛋白参与染色质组装和去组装等重要功能的蛋白质。综述了几种主要组蛋白变体在真核生物染色质高级结构的形成及维持、细胞编程与重编程的表观遗传机制等生命进程中发挥的重要作用,以及这些组蛋白变体与其特征伴侣之间特异识别的分子机制。  相似文献   

2.
染色质是真核细胞中遗传物质DNA的载体,染色质结构动态变化与DNA复制、转录、重组、修复等重要生物学事件密切相关.组蛋白是染色质结构的基本组成元件之一,组蛋白变体和组蛋白修饰是两类基本的染色质结构调控因子.在构成核小体的四种核心组蛋白(H2A、H2B、H3、H4)当中,H2A拥有最多的变体类型并在染色质结构调控中发挥重要作用.H2A组蛋白伴侣对H2A组蛋白及其变体的特异识别对于后者的折叠、修饰、传递、转运、组装、移除等生物学功能至关重要.本文着重探讨了组蛋白伴侣特异识别H2A组蛋白的分子机理,二者调控染色质结构的作用机制以及相应的生物学意义.  相似文献   

3.
染色质是真核细胞中遗传物质DNA的载体,染色质结构动态变化与DNA复制、转录、重组、修复等重要生物学事件密切相关.组蛋白是染色质结构的基本组成元件之一,组蛋白变体和组蛋白修饰是两类基本的染色质结构调控因子.在构成核小体的四种核心组蛋白(H2A、H2B、H3、H4)当中,H2A拥有最多的变体类型并在染色质结构调控中发挥重要作用.H2A组蛋白伴侣对H2A组蛋白及其变体的特异识别对于后者的折叠、修饰、传递、转运、组装、移除等生物学功能至关重要.本文着重探讨了组蛋白伴侣特异识别H2A组蛋白的分子机理,二者调控染色质结构的作用机制以及相应的生物学意义.  相似文献   

4.
真核细胞的染色质组装是组蛋白和DNA有序地形成核小体和染色质的过程.通过调节DNA的开放或折叠状态,染色质组装不但影响遗传信息的编码和存储,也决定了遗传信息的提取和解读.作为染色质组装的重要调控因子,组蛋白变体和组蛋白伴侣在与DNA相关的生命活动进程中发挥着至关重要的作用.本文综述了组蛋白变体H2A.Z以及CENP-A进行染色质组装的研究进展,并着重讨论了组蛋白变体和组蛋白伴侣在染色质组装中的重要作用.  相似文献   

5.
真核细胞的染色质组装是组蛋白和DNA有序地形成核小体和染色质的过程.通过调节DNA的开放或折叠状态,染色质组装不但影响遗传信息的编码和存储,也决定了遗传信息的提取和解读.作为染色质组装的重要调控因子,组蛋白变体和组蛋白伴侣在与DNA相关的生命活动进程中发挥着至关重要的作用.本文综述了组蛋白变体H2A.Z以及CENP-A进行染色质组装的研究进展,并着重讨论了组蛋白变体和组蛋白伴侣在染色质组装中的重要作用.  相似文献   

6.
核小体是构成真核生物染色质的基本结构单位,组蛋白变体H2A.Z及H3.3对染色质结构及基因转录过程发挥着重要的调控作用。体内研究核小体及染色质结构受到诸多因素限制,体外重构含有H2A.Z及H3.3的核小体结构是研究与组蛋白变体相关基因表达调控的重要方法之一。实验表达纯化了6种组蛋白,在复性的过程中装配了含有H2A.Z和H3.3的组蛋白八聚体。基于DNA序列10bp周期性及序列模体设计了3条易于形成核小体的DNA序列,通过PCR大量扩增的方法,回收了标记Cy3荧光分子的目的DNA序列。采用盐透析法体外组装了含有H2A.Z和H3.3的核小体结构,利用荧光标记、EB染色及考马斯亮蓝染色检测了含有组蛋白变体的核小体形成效率及形成过程的吉布斯自由能变化。结果发现,设计的3条DNA序列可以有效地组装形成含有组蛋白电梯的核小体结构,而且随着组蛋白八聚体与DNA比例的增加,核小体的形成效率显著提高;采用Cy3荧光标记可以灵敏且定量地计算组装过程的吉布斯自由能。该方法的建立对研究组蛋白变体相关的结构生物学及转录调控等具有一定的意义。  相似文献   

7.
核小体是构成真核生物染色质的基本结构单位,组蛋白变体H2A.Z及H3.3对染色质结构及基因转录过程发挥着重要的调控作用。体内研究核小体及染色质结构受到诸多因素限制,体外重构含有H2A.Z及H3.3的核小体结构是研究与组蛋白变体相关基因表达调控的重要方法之一。实验表达纯化了6种组蛋白,在复性的过程中装配了含有H2A.Z和H3.3的组蛋白八聚体。基于DNA序列10bp周期性及序列模体设计了3条易于形成核小体的DNA序列,通过PCR大量扩增的方法,回收了标记Cy3荧光分子的目的 DNA序列。采用盐透析法体外组装了含有H2A.Z和H3.3的核小体结构,利用荧光标记、EB染色及考马斯亮蓝染色检测了含有组蛋白变体的核小体形成效率及形成过程的吉布斯自由能变化。结果发现,设计的3条DNA序列可以有效地组装形成含有组蛋白电梯的核小体结构,而且随着组蛋白八聚体与DNA比例的增加,核小体的形成效率显著提高;采用Cy3荧光标记可以灵敏且定量地计算组装过程的吉布斯自由能。该方法的建立对研究组蛋白变体相关的结构生物学及转录调控等具有一定的意义。  相似文献   

8.
孙朝冉  吴旭东 《遗传》2024,(4):279-289
H2A.Z是组蛋白H2A常见的组蛋白变体。近年来,人们通过多学科手段探究了H2A.Z对于基因转录的激活或抑制作用。本文在概述组蛋白变体和H2A.Z发展史的基础上,重点阐述了H2A.Z不同亚型、不同翻译后修饰和基因组分布在转录调控过程中的作用,明确了其生物学意义和在肿瘤发生发展、神经系统分化发育过程中的病理生理学意义,并总结了H2A.Z在染色质沉积或者移除的动态调控机制方面的研究进展,以期为深入了解组蛋白变体的多样性,并为寻找相关疾病诊疗的新靶点提供参考。  相似文献   

9.
组蛋白变体及组蛋白替换   总被引:2,自引:0,他引:2  
吴南  桂建芳 《遗传》2006,28(4):493-500
组蛋白作为核小体的基本组分,是染色质的结构和功能必需的。对于不同状态的染色质,核小体中会组装入相应的组蛋白变体,并且各种组蛋白变体的尾部也能发生多种修饰。这些变体通过改变核小体的空间构象和稳定性,决定基因转录的激活或沉默,DNA的修复,染色体的异染色化等。在组蛋白替换过程中,组蛋白变体是通过相应的染色质重构复合物组装入核小体,不同的变体有着不同的组装途径。对组蛋白变体的研究是近年来表观遗传学新的研究热点,也是对“组蛋白密码”的新的诠释。并且,组蛋白替换揭示了DNA-组蛋白相互作用变化的一种新的机制。

  相似文献   

10.
在植物发育过程中,除了遗传调控激活或抑制基因表达来促进植物发育过程中细胞分化外,表观遗传学是另外一个重要的、复杂的调控层面,在该过程中通过DNA特异位点的甲基化,组蛋白的翻译后修饰改变染色质的状态,进而时空性调控植物发育调控因子的表达。分化细胞提供了一个研究组蛋白密码如何影响细胞命运功能强大的系统。本研究重点综述了表观遗传调控中DNA甲基化、组蛋白甲基化及组蛋白乙酰化在植物细胞分化中的调控作用。  相似文献   

11.
12.
Many phenotypic changes of eukaryotic cells due to changes in gene expression depend on alterations in chromatin structure. Processes involved in the alteration of chromatin are diverse and include post-translational modifications of histone proteins, incorporation of specific histone variants, methylation of DNA and ATP-dependent chromatin remodeling. Interconnected with these processes are the localization of chromatin domains within the nuclear architecture and the appearance of various classes of noncoding regulatory RNAs. Recent experiments underscore the role of these processes in influencing diverse biological functions. However, the evidence to date implies the importance of an interplay of all these chromatin-changing functions, generating an epigenetic regulatory circuit that is still not well understood.  相似文献   

13.
Many phenotypic changes of eukaryotic cells due to changes in gene expression depend on alterations in chromatin structure. Processes involved in the alteration of chromatin are diverse and include post-translational modifications of histone proteins, incorporation of specific histone variants, methylation of DNA and ATP-dependent chromatin remodeling. Interconnected with these processes are the localization of chromatin domains within the nuclear architecture and the appearance of various classes of noncoding regulatory RNAs. Recent experiments underscore the role of these processes in influencing diverse biological functions. However, the evidence to date implies the importance of an interplay of all these chromatin-changing functions, generating an epigenetic regulatory circuit that is still not well understood.  相似文献   

14.
Members of histone H1 family bind to nucleosomal and linker DNA to assist in stabilization of higher‐order chromatin structures. Moreover, histone H1 is involved in regulation of a variety of cellular processes by interactions with cytosolic and nuclear proteins. Histone H1, composed of a series of subtypes encoded by distinct genes, is usually differentially expressed in specialized cells and frequently non‐randomly distributed in different chromatin regions. Moreover, a role of specific histone H1 subtype might be also modulated by post‐translational modifications and/or presence of polymorphic isoforms. While the significance of covalently modified histone H1 subtypes has been partially recognized, much less is known about the importance of histone H1 polymorphic variants identified in various plant and animal species, and human cells as well. Recent progress in elucidating amino acid composition‐dependent functioning and interactions of the histone H1 with a variety of molecular partners indicates a potential role of histone H1 polymorphic variation in adopting specific protein conformations essential for chromatin function. The histone H1 allelic variants might affect chromatin in order to modulate gene expression underlying some physiological traits and, therefore could modify the course of diverse histone H1‐dependent biological processes. This review focuses on the histone H1 allelic variability, and biochemical and genetic aspects of linker histone allelic isoforms to emphasize their likely biological relevance.  相似文献   

15.
Changes in the overall structure of chromatin are essential for the proper regulation of cellular processes, including gene activation and silencing, DNA repair, chromosome segregation during mitosis and meiosis, X chromosome inactivation in female mammals, and chromatin compaction during apoptosis. Such alterations of the chromatin template occur through at least 3 interrelated mechanisms: post-translational modifications of histones, ATP-dependent chromatin remodeling, and the incorporation (or replacement) of specialized histone variants into chromatin. Of these mechanisms, the exchange of variants into and out of chromatin is the least well understood. However, the exchange of conventional histones for variant histones has distinct and profound consequences within the cell. This review focuses on the growing number of mammalian histone variants, their particular biological functions and unique features, and how they may affect the structure of the nucleosome. We propose that a given nucleosome might not consist of heterotypic variants, but rather, that only specific histone variants come together to form a homotypic nucleosome, a hypothesis that we refer to as the nucleosome code. Such nucleosomes might in turn participate in marking specific chromatin domains that may contribute to epigenetic inheritance.  相似文献   

16.
Post-translational methylation of lysine residues on histone tails is an epigenetic modification crucial for regulation of chromatin structure and gene expression in eukaryotes. The majority of the histone lysine methyltransferases (HKMTases) conferring such modifications are proteins with a conserved SET domain responsible for the enzymatic activity. The SET domain proteins in the model plant Arabidopsis thaliana can be assigned to evolutionarily conserved classes with different specificities allowing for different outcomes on chromatin structure. Here we review the present knowledge of the biochemical and biological functions of plant SET domain proteins in developmental processes. This article is part of a Special Issue entitled: Epigenetic control of cellular and developmental processes in plants.  相似文献   

17.
Brown DT 《Genome biology》2001,2(7):reviews0006.1-reviews00066
In most eukaryotes, histones, which are the major structural components of chromatin, are expressed as a family of sequence variants encoded by multiple genes. Because different histone variants can contribute to a distinct or unique nucleosomal architecture, this heterogeneity can be exploited to regulate a wide range of nuclear functions, and evidence is accumulating that histone variants do indeed have distinct functions.  相似文献   

18.
19.
Histone variants in metazoan development   总被引:1,自引:0,他引:1  
Embryonic development is regulated by both genetic and epigenetic mechanisms, with nearly all DNA-templated processes influenced by chromatin architecture. Sequence variations in histone proteins, core components of chromatin, provide a means to generate diversity in the chromatin structure, resulting in distinct and profound biological outcomes in the developing embryo. Emerging literature suggests that epigenetic contributions from histone variants play key roles in a number of developmental processes such as the initiation and maintenance of pericentric heterochromatin, X-inactivation, and germ cell differentiation. Here, we review the role of histone variants in the embryo with particular emphasis on early mammalian development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号