首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

2.
Ganoderma lucidum is a well-known and important medicinal mushroom, but its genetic modification has not been reported. We developed an efficient procedure for isolation and regeneration of protoplasts fromG. lucidum. To construct a vector for high-level expression of heterologous genes inG. lucidum, the 1.4-kb regulatory region of the glyceraldehyde-3-phosphate dehydrogenase gene (GPD) was isolated from the genomic DNA ofLentinus edodes, and theGPD promoter was fused to the β-glucuronidase (GUS) and bialaphos resistance (bar) genes. Using the resulting construct, p301-bG1, an efficient transformation system based on electroporation was established forG. lucidum. GUS expression was observed among transformants conferring bialaphos resistance, indicating that theL. edodes GPD promoter can be used for expression of exogenous genes inG. lucidum. We also studied green fluorescent protein (GFP) as another reporter for transformation ofG. lucidum. TheL. edodes GPD promoter was fused respectively to theGFP andbar genes, and the resulting construct, p301-bg, was introduced intoG. lucidum. StableGFP expression in transformants was detectable by fluorescence microscopy, suggesting the suitability ofGFP as a reporter system in transformation of this mushroom. This is the first report of an efficient transformation system forG. lucidum using different reporters, paving the way for genetic modification of this famous medicinal mushroom.  相似文献   

3.
Public concern and metabolic drain were the main driving forces for the development of a selectable marker-free transformation system. We demonstrated here the production of transgenic tobacco plants using a non-selection approach by Agrobacterium tumefaciens-mediated transformation. A. tumefaciens-infected leaf explants were allowed to produce shoots on a shoot induction medium (SIM) containing no selective compounds. Up to 35.1% of the A. tumefaciens-infected leaf explants produced histochemically GUS+ shoots, 3.1% of regenerated shoots were GUS+, and 72% of the GUS+ shoots were stably transformed by producing GUS+ T1 seedlings. When polymerase chain reaction (PCR) was used to screen the regenerated shoots, 4% of the shoots were found to be PCR+ for the transgene and 65% of the PCR+ shoots were stable transformants. Also, generation of PCR+ escapes decreased linearly as the number of subculture increased from one to three on SIM containing the antibiotic that kills the Agrobacterium. Twenty-five to 75% of the transformants were able to transmit transgene activity to the T1 generation in a Mendelian 3:1 ratio, and a transformation efficiency of 2.2–2.8% was achieved for the most effective binary vector. These results indicated that majority of the GUS+ or PCR+ shoots recovered under no selection were stable transformants, and only one-third of them were chimeric or escapes. Transgenes in these transgenic plants were able to transmit the transgene into progeny in a similar fashion as those recovered under selection.  相似文献   

4.
In this study, conditions were optimized for transient gene expression in Rough Lemon (Citrus jambhiri Lush.), a major rootstock used in the citrus growing regions of Pakistan.Agrobacterium tumefaciens carrying the binary vector p35GUSINT, containingNPT II andGUS genes, was used in the study. The transformation method was based on injection ofAgrobacterium intoCitrus fruits followed by histochemical assay ofGUS activity in different tissues. Different tissues of mature fruits exhibited significantly different percentages of transientGUS expression: in rind (76%), spongy tissue (92%), juice vesicles (0%) and seeds (83%) (P<0.01)., The incubation period after injecting theAgrobacterium culture also showed a significant (P<0.01) effect on the transient expression ofGUS in these tissues. An incubation period of 48 h was found to be the best (72%) for transformation of whole fruit, followed by 72 h (67%) and 96 h (49%). TransientGUS expression also varied significantly (P<0.01) in juice vesicles and seeds as fruit matured. Juice vesicles from mature fruits showed no transientGUS expression, while those from immature fruits showed 50% expression. Furthermore, transformation of seeds had no effect on their germination capability. Germinating seeds from mature fruits injected withAgrobacterium culture showed tolerance to kanamycin (100 mg/L), which varied with the incubation period (55% at 48 h, 25% at 72 h and 23% at 96 h). This report offers an easy protocol for transient expression studies of transgenes and has the potential to be used for stable transformation ofCitrus.  相似文献   

5.
Phanerochaete sordida YK-624 is a hyper lignin-degrading basidiomycete possessing greater ligninolytic selectivity than either P. chrysosporium or Trametes versicolor. To construct a gene transformation system for P. sordida YK-624, uracil auxotrophic mutants were generated using a combination of ultraviolet (UV) radiation and 5-fluoroorotate resistance as a selection scheme. An uracil auxotrophic strain (UV-64) was transformed into a uracil prototroph using the marker plasmid pPsURA5 containing the orotate phosphoribosyltransferase gene from P. sordida YK-624. This system generated approximately 50 stable transformants using 2 × 107 protoplasts. Southern blot analysis demonstrated that the transformed pPsURA5 was ectopically integrated into the chromosomal DNA of all transformants. The enhanced green fluorescent protein (EGFP) gene was also introduced into UV-64. The transformed EGFP was expressed in the co-transformants driven by P. sordida glyceraldehyde-3-phosphate dehydrogenase gene promoter and terminator regions.  相似文献   

6.
In a construct containing a GUS reporter gene driven by the 5′ regulatory elements from rubi3, expression was enhanced 4-fold when a 20-nucleotide (nt) GUS 5′ untranslated sequence was replaced with 9 nt sequences derived from rubi3′s second exon. The roles of the sequences immediately upstream from the GUS translation initiation codon, and their significance in gene expression, were investigated. Sequence analysis suggests that complementarity between sequences immediately 5′ of a translation initiation codon and the rice 17S rRNA may be responsible for the reduction in protein levels from constructs containing the GUS leader sequence. The results demonstrate an affect sequences immediately upstream from transgenic coding sequences have on expression, and when using the rubi3 5′ regulatory sequence in particular.  相似文献   

7.
A silicon carbide whisker-mediated gene transfer system with recovery of fertile and stable transformants was developed for cotton (Gossypium hirsutum L.) cv. Coker-312. Two-month-old hypocotyl-derived embryogenic/non-embryogenic calli at different days after subculture were treated with silicon carbide whiskers for 2 min in order to deliver pGreen0029 encoding GUS gene and pRG229 AVP1 gene, encoding Arabidopsis vacuolar pyrophosphatase, having neomycin phosphotransferaseII (nptII) genes as plant-selectable markers. Three crucial transformation parameters, i.e., callus type, days after subculture and selection marker concentration for transformation of cotton calli were evaluated for optimum efficiency of cotton embryogenic callus transformation giving upto 94% transformation efficiency. Within six weeks, emergence of kanamycin-resistant (kmr) callus colonies was noted on selection medium. GUS and Southern blot analysis showed expression of intact and multiple transgene copies in the transformed tissues. Kanamycin wiping of leaves from T1, T2, and T3 progeny plants revealed that transgenes were inherited in a Mendelian fashion. Salt treatment of T1 AVP1 transgenic cotton plants showed significant enhancement in salt tolerance as compared to control plants. Thus far, this is first viable physical procedure after particle bombardment available for cotton that successfully can be used to generate fertile cotton transformants.  相似文献   

8.
We have evaluated the transformation efficiency of two lettuce (Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens-mediated gene transfer. Six-day-old cotyledons were co-cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the β-glucuronidase gene (GUS) under the control of the cauliflower mosaic virus 35S promoter (CaMV 35S), while the second construct contained the ethylene mutant receptor etr1-1, which confers ethylene insensitivity, under the control of a leaf senescence-specific promoter (sag12). Tissues co-cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co-cultivated with Agrobacteria carrying the etr1-1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained (2.86%). These results indicate that the ethylene insensitivity conferred by the etr1-1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.  相似文献   

9.
An improved protocol for Agrobacterium tumefaciens-mediated transformation and regeneration of the tomato cultivar Rio Grande with Arabidopsis thaliana early flowering genes AP1 and LFY has been developed. The effect of different factors on the efficiency of regeneration as well as transformation has been studied. A. tumefaciens strain EHA 105 harboring either of the binary vectors pROKIIAP1GUSint or pROKIILFYGUSint, containing APETALA 1, LEAFY (LFY), β-glucuronidase (GUS), and neomycin phosphotransferase II (NPTII) was used for transformation. The effect of different regeneration media was studied and Murashige and Skoog (MS) medium containing Zeatin 1 mg/l and IAA 0.5 mg/l was found best, producing the highest percentage of regeneration, i.e., 30.4% and transformation, i.e., 84% (P < 0.05). The age of explants was studied and 1-week-old explants were found best producing highest regeneration (29.5%) and transformation (87.5%) values (P < 0.05). Three different types of explants were compared and best results were obtained from apical meristem explants (60.5% regeneration and 85% transformation) (P < 0.05). Transient and stable GUS expression was observed in the transgenic plants.  相似文献   

10.
Highly efficient Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata (L.) Raf.) was achieved via indirect shoot organogenesis. Stable transformants were obtained from epicotyl segments infected with Agrobacterium strain EHA 105 harboring the binary vector pBI121, which contained the neomycin phosphotransferase gene (NPTII) as a selectable marker and the β-glucuronidase (GUS) gene as a reporter. The effects of regeneration and selection conditions on the transformation efficiency of P. trifoliata (L.) Raf. have been investigated. A 7-d cocultivation on a medium with 8.86 μM 6-benzylaminopurine (BA)+1.43 μM indole-3-acetic acid (IAA) was used to improve callus formation from epicotyl segments after transformation. A two-step selection strategy was developed to select kanamycin-resistant calluses and to improve rooting of transgenic shoots. Transgenic shoots were multiplied on shoot induction medium with 1.11 μM BA + 5.71 μM IAA. Using the optimized transformation procedure, transformation efficiency and rooting frequency reached 417% and 96%, respectively. Furthermore, the number of regenerated escape shoots was dramatically reduced. Stable integration of the transgenes into the genome of transgenic citrus plants was confirmed by GUS histochemical assay, PCR, and Southern blot analysis.  相似文献   

11.
Summary A heterologous gene mediated transformation system based on niaD, the structural gene encoding nitrate reductase, has been developed for Penicillium chrysogenum. Transformation frequencies of up to 20 transformants per microgram DNA were obtained using the Aspergillus nidulans gene and 9 transformants per microgram using the A. niger gene. Vector constructs carrying the A. nidulans ans-1 sequence and the A. niger niaD gene did not show increased transformation frequencies. Southern blot hybridisation analysis demonstrated that vector sequences had integrated into the recipient genome. The control of heterologous niaD gene expression generally agreed with that found in the wild-type strain, that is, induction by nitrate and repression in the presence of ammonium.  相似文献   

12.
We cloned a gene encoding the succinate dehydrogenase iron-sulfur protein subunit (sip) from a bipolar mushroom, Pholiota microspora, and introduced a point mutation that confers carboxin resistance into this gene. Using this homologous selective marker and also a heterologous drug selective marker, the hygromycin B phosphotransferase gene (hph), we successfully constructed a DNA-mediated transformation system in P. microspora. Both these selection markers have high transformation efficiency: the efficiency of carboxin resistance transformation was about 88.8 transformants/μg pMBsip2 DNA using 5 × 106 protoplasts in regeneration plates containing 1.0 μg/ml carboxin, and the efficiency of hygromycin B resistance transformation was about 122.4 transformants/μg pMBhph1 DNA using 5 × 106 protoplasts in regeneration plates containing 150 μg/ml hygromycin B. Southern hybridization analysis showed that the introduced sequence (mutant sip or hph) was integrated into the chromosomal DNA in these transformants with a copy number of one or more.  相似文献   

13.
Highly efficient and reproducible transformation ofChlorobium vibrioforme with plasmid DNA has been achieved by electroporation. Specific parameters have been optimized for the electrotransformation procedure. The method was developed using a construct containing a full copy of thepscC gene encoding the cytochromec 551 subunit of the photosynthetic reaction center complex and theaadA gene encoding streptomycin resistance as selectable marker. Southern blotting analysis showed that the tested colonies were true transformants with the plasmid integrated into the genome by single homologous recombination. No transformants were obtained using the vector without thepscC gene showing that this vector does not replicate inC. vibrioforme. Thus transformation is possible only by homologous recombination. When using constructs designed to inactivate thepscC gene by insertion no transformants were obtained, indicating that the gene is indispensable for growth. The vector pVS2 carrying genes for erythromycin and chloramphenicol resistance was shown to replicate inC. vibrioforme. The two transformations shown here, provide an important genetical tool in the further analysis of structure and function of the photosynthetic apparatus in green sulfur bacteria.  相似文献   

14.
Summary Agrobacterium-mediated transformation of Arabidopsis, ecotype ‘Estland’, was established from root explants using kanamycin selection. Continuous light during callus and shoot induction phases was promotive for shoot regeneration, as compared to light/dark cycles. Use of optimized conditions for transformation led to the formation of kanamycin-resistant calluses (up to 77%) and transformed plantlets at a frequency of up to 45%. Southern analysis showed the presence of 1.2. or more T-DNA inserts in 33%, 50%, and 17% of the primary transformants, respectively. Mendelian, as well as non-Mendelian, inheritance patterns were obtained upon screening the progeny (T1) of various transformants for the expression of gus and nptII genes; the analysis of some of these transformants at the molecular level also corroborated the Mendelian inheritance pattern. Moreover, genotypes of the T1 progeny could be predicted on the basis of T2 progeny analysis.  相似文献   

15.
We report in this study, an improved method for identifying male sterile–restorer combinations using the barnasebarstar system of pollination control for heterosis breeding in crop plants, as an alternative to the conventional line × tester cross method. In this strategy, a transgenic male sterile barnase line was retransformed with appropriate barstar constructs. Double transformants carrying both the barnase and barstar genes were identified and screened for their male fertility status. Using this strategy, 66–90% of fertile retransformants (restored events) were obtained in Brassica juncea using two different barstar constructs. Restored events were analysed for their pollen viability and copy number of the barstar gene. Around 90% of the restored events showed high pollen viability and ∼30% contained single copy integrations of the barstar gene. These observations were significantly different from those made in our earlier studies using line (barnase) × tester (barstar) crosses, wherein only two viable male sterile–restorer combinations were identified by screening 88 different cross-combinations. The retransformation strategy not only generated several independent restorers for a given male sterile line from a single transformation experiment but also identified potential restorers in the T0 generation itself leading to significant savings in time, cost and labour. Single copy restored plants with high pollen viability were selfed to segregate male sterile (barnase) and restorer (barstar) lines in the T1 progeny which could subsequently be diversified into appropriate combiners for heterosis breeding. This strategy will be particularly useful for crop plants where poor transformation frequencies and/or lengthy transformation protocols are a major limitation.  相似文献   

16.
Expression of the uidA reporter gene was tested in transformation experiments of barrel medic (Medicago truncatula Gaertn.) with the ipt-type control vectors pIPT5, pIPT10 and pIPT20 and distinct in vitro culture conditions. The highest GUS expression levels were obtained with the pIPT10 construct carrying the ipt gene under the control of the native ipt promoter and using kanamycin as selective agent. The ipt-shooty transformants, characterized by the absence of both rooting ability and apical dominance associated with vitrification, were easily identified by visual selection. Using only the ipt gene as selectable marker, we obtained a stable transformation frequency of 9.8% with pIPT10 construct. The ipt-type MAT vector pEXM2 was then used to monitor the excision events mediated by the yeast Recombinase and the consequent production of ipt marker-free transgenic plants. Transgenic ipt-shooty lines were recovered at a frequency of 7.9% in the absence of kanamycin-based selection. The ipt-shooty phenotype was maintained in all the transgenic lines and no reversion to the normal phenotype occurred. PCR analysis revealed the presence of the ‘hit and run’ cassette in the genome of all the regenerated ipt-shooty lines while RT-PCR experiments confirmed the expression of the R gene, encoding the yeast Recombinase. A detailed molecular investigation, carried out to verify the integrity of the RS sites, revealed that these regions were intact in most cases. Our results with barrel medic suggest that the MAT system must be carefully evaluated and discussed on a case by case basis. L. Scaramelli, A. Balestrazzi and M. Confalonieri have contributed equally to this work.  相似文献   

17.
Rapid and reproducible Agrobacterium-mediated transformation of sorghum   总被引:6,自引:0,他引:6  
A rapid and reproducible Agrobacterium-mediated transformation protocol for sorghum has been developed. The protocol uses the nptII selectable marker gene with either of the aminoglycosides geneticin or paromomycin. A screen of various A. tumefaciens strains revealed that a novel C58 nopaline chromosomal background carrying the chrysanthopine disarmed Ti plasmid pTiKPSF2, designated NTL4/Chry5, was most efficient for gene transfer to sorghum immature embryos. A NTL4/Chry5 transconjugant harboring the pPTN290 binary plasmid, which carries nptII and GUSPlus TM expression cassettes, was used in a series of stable transformation experiments with Tx430 and C2-97 sorghum genotypes and approximately 80% of these transformation experiments resulted in the recovery of at least one transgenic event. The transformation frequencies among the successful experiments ranged from 0.3 to 4.5%, with the average transformation frequency being approximately 1% for both genotypes. Over 97% of the transgenic events were successfully established in the greenhouse and were fully fertile. Co-expression of GUSPlus TM occurred in 89% of the transgenic T0 events. Seed set for the primary transgenic plants ranged from 145 to 1400 seed/plant. Analysis of T1 progeny demonstrated transmission of the transgenes in a simple Mendelian fashion in the majority of events.  相似文献   

18.
Summary The Dutch potato cultivar Bintje has been transformed by Agrobacterium strain LBA1060KG, which contains two plasmids carrying three different DNAs (TL- and TR-DNA on the Agrobacterium rhizogenes plasmid and TKG-DNA on the pBI121 plasmid). Several transformed root clones were obtained after transformation of leaf, stem, and tuber segments, and plants were then regenerated from these root clones. The expression of the various marker genes [rol, opine, -glucuronidase (GUS), and neomycin phosphotransferase (NPTII)] was determined in several root clones and in regenerated plants. The selection of vigorously growing root clones was as efficient as selection for kanamycin resistance. In spite of the location of NPTII and GUS genes on the same T-DNA, 17% of the root clones did not show GUS activity. Nevertheless, Southern blot analysis showed that these root clones contained at least three copies of the GUS gene. Sixty-four per cent of the root clones contained opines. The expression of these genes, however, was negatively correlated with plant regeneration capacity and normal plant development. The differential expression of the marker genes in the transgenic potato tissues is discussed.  相似文献   

19.
Agrobacterium tumefaciens strain LBA4404 carrying a binary vector pTOK233, which contained the GUS reporter gene and a kanamycin-resistance gene nptII, was employed for optimizing the transformation efficiency evaluated by a GUS gene transient expression level. Eight factors including explant types, explant size and source, the concentration of cytokinin, inoculation time, pH of inoculation and cocultivation media, bacterial concentration, acetosyringone concentration, and cocultivation duration were investigated in detail. This optimized protocol was then adopted to obtain transgenic tomato plants resistant to cucumber mosaic virus (CMV) mediated by Agrobacterium tumefaciens, strain LBA4404, carrying a binary vector pR-ΔGDD containing the kanamy cin-resistance gene and CMV replicase gene with GDD deletion. The presence of the CMV-RNA2 gene was confirmed by genomic DNA Southern blot analysis in all transformants analyzed. Field spray test showed that the transgenic tomato plants were resistant to 100 mg/l kanamycin. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 2, pp. 280–284. The text was submitted by the authors in English.  相似文献   

20.
A reliable method of plant regeneration has been achieved from decapitated mature embryo axes (DCMEA) explants. Shoots appear directly from explants of genotype T-15-15 when cultured on Maheswaran and Williams (EC6) basal medium supplemented with N6-benzylaminopurine (BAP) and indole-3-acetic acid (IAA) at various combinations. The shoots elongated on half strength Murashige and Skoog (MS) medium fortified with 3 μM gibberellic acid. Elongated shoots were rooted with 80 – 85 % efficiency on half strength MS medium with 0.5 μM indole-3-butyric acid. Survival of plants in the pots was 75 – 80 %. This protocol was used in Agrobacterium mediated transformation. The DCMEA explants were treated independently with two A. tumefaciens (LBA 4404) strains harbouring a binary vector carrying the green fluorescent protein (GFP) and β-glucuronidase (GUS) reporter genes, respectively. Both the strains contained neomycin phosphotransferase selectable marker gene. After co-cultivation, the explants were cultured on EC6 basal medium supplemented with 5 μM BAP and 1 μM IAA. The selection of putative transformants was on a medium containing 50 mg dm−3 kanamycin. Expression of GUS and GFP gene was confirmed by histochemical assay and fluorescence microscopy, respectively. The elongated shoots expressing GFP reporter gene were rooted and transferred to pots for hardening. The integration of GFP gene into the genome of putative transformants was confirmed by Southern blotting. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号