首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为了探讨拟南芥O-岩藻糖基转移酶(SPINDLY)在病原体相关分子模式诱导抗性中的作用,该研究以SPINDLY缺失拟南芥突变体spy-3为实验材料,从叶片表型、病情指数、病菌定殖量以及丁香假单胞菌(Pst DC3000)关键基因的表达水平等指标,系统考察了SPINDLY在壳寡糖诱导拟南芥抗Pst DC3000中的功能。结果显示:(1)spy-3突变体比野生型更易被Pst DC3000侵染。(2)与病菌侵染组相比,壳寡糖预处理明显缓解植株叶片黄化现象,显著降低Pst DC3000的定殖量。(3)壳寡糖预处理的spy-3植株中水杨酸和茉莉酸途径相关基因的表达量及水杨酸和茉莉酸含量均较病菌侵染组明显升高。(4)壳寡糖在spy-3中的诱抗效果与野生型相比无明显差别。研究表明,SPINDLY在植物先天免疫过程发挥重要作用,但并不影响壳寡糖的诱导抗性。  相似文献   

2.
为分析褪黑素(N-乙酰-5-甲氧基色胺)在植物先天免疫中的功能及调控机理,研究以病原菌丁香假单胞杆菌(Pseudomonas syringae pv.tomato DC3000,Pst DC3000)—烟草互作系统为模型,检测了病原菌侵染对烟草褪黑素相关基因表达的影响,并探讨了褪黑素对植物叶片病原菌生长以及气孔开度和活性氧自由基(reactive oxygen species,ROS)含量的影响以及调控机理。结果表明:(1)Pst DC3000处理提高了烟草褪黑素合成(NtSNAT1)和受体(NtPMTR1)基因表达,且外源褪黑素处理降低了叶片中的病原菌含量。(2)与野生型植物相比,过表达大豆GmSNAT1基因显著提高了转基因烟草中内源褪黑素含量和NtPMTR1的表达,且转基因烟草叶片中的Pst DC3000菌落数显著下降。(3)外源褪黑素和细菌鞭毛蛋白多肽flg22处理诱导了野生型和转基因烟草保卫细胞中ROS产生和气孔关闭,且转基因植物对褪黑素和flg22诱导的气孔关闭和ROS产生比野生型烟草更加敏感。综上所述,研究表明褪黑素可能通过受体NtPMTR1介导的信号途径促进保卫细胞ROS产生,诱导气孔关闭,从而降低病原菌Pst DC3000的入侵。  相似文献   

3.
伏马毒素B1(FB1)是一种来源于串珠镰刀菌的可以引起植物光依赖性超敏反应的病原激发子,但这种超敏反应的机制研究尚不清楚。运用光学分子成像技术,并借助调制叶绿素荧光和激光共聚焦成像系统对拟南芥叶片在FB1侵染早期的光化学效率和叶绿体形态变化进行了分析,研究了FB1诱导的光依赖性超敏反应过程中的分子机制。结果发现,在光参与下,FB1明显降低了拟南芥叶片叶绿体的光化学效率,促进了叶绿体来源的活性氧大量产生和绿色荧光蛋白(GFP)标记的叶绿体基质蛋白的降解,而过氧化氢酶或抗坏血酸预处理则抑制了这一过程,说明活性氧参与促进了GFP标记的叶绿体基质蛋白的降解。总之,本文借助光学分子成像技术发现叶绿体在FB1诱发的植物光依赖性的超敏反应早期发挥着重要作用。  相似文献   

4.
张泰龙  朱洁伟  陈捷 《菌物学报》2014,33(6):1302-1312
SM1蛋白是由绿木霉Trichoderma virens产生的一种富含半胱氨酸的小蛋白,能够作为激发子激发植物防御反应。研究了SM1蛋白对拟南芥Arabidopsis thaliana生长及诱导抗性的作用。结果表明高浓度(>10μg/mL)SM1蛋白液抑制拟南芥的生长,低浓度SM1蛋白液则不影响生长;SM1能诱导拟南芥对细菌性叶斑病Pseudomonas syringae pv. tomato DC3000的抗性,引起拟南芥叶片过氧化氢的积累。SM1蛋白处理后,拟南芥叶片中植物防御反应相关基因PDF1.2、LOX2和活性氧酶基因 SOD、POD等表达显著上升,说明SM1在激活植物的JA/ET和ROS途径中发挥着重要作用。研究为进一步研究SM1诱导植物抗性的机理提供了基础。  相似文献   

5.
目的探讨白藜芦醇通过诱导ROS及活化AMPK促进Hep-2细胞自噬的可能机制。方法采用40μM浓度白藜芦醇复合培养液作用于Hep-2细胞6h后,western blot分别分析蛋白水平,DCFH-DA染色法分析细胞内活性氧水平。结果白藜芦醇促Hep-2细胞自噬作用与其促活性氧增多有关,经白藜芦醇处理后,Hep-2细胞内活性氧增加约6倍,进一步研究发现,活性氧通过激活AMPK-mTOR途径而促进Hep-2细胞自噬。结论白藜芦醇诱导Hep-2细胞自噬的机制可能与通过活性氧激活AMPK-mTOR途径促进Hep-2细胞自噬有关。  相似文献   

6.
AZI1属于脂转移蛋白家族,它在拟南芥抵抗病原菌侵染过程中可能起着传递信号物质的作用。该实验以过表达和T-DNA插入突变体及野生型拟南芥植株为材料,通过RNA印迹、蛋白质免疫印迹和原位免疫组织化学方法,研究了拟南芥壬二酸诱导基因AZI1对丁香假单胞杆菌的抗性功能。结果表明:(1)AZI1基因可以被丁香假单胞杆菌、H2O2和乙烯利诱导,它可能参与水杨酸和乙烯介导的抗菌途径。(2)蛋白质免疫印迹实验结果显示,丁香假单胞杆菌侵染叶片的叶柄渗出液中存在AZI1蛋白及其同源物EARLI1,并能够与其他蛋白质形成复合体,说明AZI1有可能通过维管组织移动到个体的其他部位,与信号分子的转移有关。(3)AZI1及其同源物EARLI1主要在花序茎的木质化部位表达,过表达AZI1基因能够促进木质素的合成,提高拟南芥对丁香假单胞杆菌的抗性。  相似文献   

7.
以拟南芥野生型、SOS突变体印tsosl、Atsos2和Atsos3)、H2S合成相关酶L-/D-半胱氨酸脱巯基酶(L-/D-CDes)基因缺失突变体(Atl-cdes和Atd-cdes)和过表达株系(OEL—CDes和OED-CDes)为材料研究了H,s和SOS信号转导途径在盐胁迫诱导拟南芥气孔关闭中的作用及其相互关系。结果表明,盐胁迫能够引起拟南芥叶片H,S含量、L-/D-CDes活性及其基因表达量显著升高,诱导野生型拟南芥和OEL—CDes和OED.CDes叶片气孔关闭,但对Atl-cdes和Atd-cdes气孔开度无显著影响;而H2S清除剂次牛磺酸(hypotaurine,HT)可减弱盐胁迫诱导的拟南芥气孔关闭的作用,表明H2S参与盐胁迫诱导的拟南芥气孔关闭过程。外源H2S诱导野生型拟南芥气孔关闭,但对SOS突变体气孔开度无显著影响;同时盐胁迫下Atsosl、Atsos2和Atsos3亦表现出H2S含量及L-/D-CDes活性显著升高,且与野生型相比,盐胁迫对Atl-cdes和Atd-cdes叶片AtSOS基因表达量无显著影响。表明盐胁迫诱导气孔关闭过程中H2S位于SOS上游。  相似文献   

8.
以拟南芥野生型、SOS突变体(Atsos1、Atsos2和Atsos3)、H2S合成相关酶L-/D-半胱氨酸脱巯基酶(L-/D-CDes)基因缺失突变体(Atl-cdes和Atd-cdes)和过表达株系(OEL-CDes和OED-CDes)为材料研究了H2S和SOS信号转导途径在盐胁迫诱导拟南芥气孔关闭中的作用及其相互关系。结果表明,盐胁迫能够引起拟南芥叶片H2S含量、L-/D-CDes活性及其基因表达量显著升高,诱导野生型拟南芥和OEL-CDes和OED-CDes叶片气孔关闭,但对Atl-cdes和Atd-cdes气孔开度无显著影响;而H2S清除剂次牛磺酸(hypotaurine,HT)可减弱盐胁迫诱导的拟南芥气孔关闭的作用,表明H2S参与盐胁迫诱导的拟南芥气孔关闭过程。外源H2S诱导野生型拟南芥气孔关闭,但对SOS突变体气孔开度无显著影响;同时盐胁迫下Atsos1、Atsos2和At-sos3亦表现出H2S含量及L-/D-CDes活性显著升高,且与野生型相比,盐胁迫对Atl-cdes和Atd-cdes叶片AtSOS基因表达量无显著影响。表明盐胁迫诱导气孔关闭过程中H2S位于SOS上游。  相似文献   

9.
本工作采用酿酒酵母细胞表达载体pESC和植物细胞表达载体pPZP211分析了拟南芥AZI1基因对真菌的抗性功能。半乳糖诱导产生的AZI1蛋白可以使酵母细胞的生长能力明显降低。DAB和台酚蓝染色结果显示用蒜薹灰霉菌孢子处理Col-0野生型植株叶片后被侵染部位只能产生少量H2O2,病原体可以扩散,而AZI1基因过表达植株叶片在侵染部位有大量H2O2产生,着色较深,表明转化体能够以局部细胞的死亡来阻止病原体侵染周围的细胞。在Col-0野生型植株中,AZI1基因的表达受外源水杨酸诱导,24h后达到峰值。以上结果说明AZI1基因在拟南芥对生物胁迫因素的应答过程中具有重要作用。  相似文献   

10.
盐胁迫严重限制着植物的生长发育,造成农业产量下降。植物遭受盐胁迫时,细胞代谢受到抑制,体内会积累较多活性氧(ROS)进而对植物造成氧化胁迫,诱导自噬现象的产生。本文主要研究了植物对于盐胁迫诱导的自噬及其反应的调控机制。研究中发现,在高盐浓度处理的拟南芥幼苗中自噬现象迅速产生,伴随着NADPH氧化酶活性的明显上升。此外,通过用荧光探针Lyso Tracker Red(LTR)定位自噬小体,激光共聚焦观察发现At TOR不仅可以在正常生理环境下抑制自噬小体的生成,而且可以在高盐浓度胁迫环境下抑制自噬。进而我们发现在高盐浓度处理的同时添加NADPH氧化酶抑制剂DPI后,处理过后的WT株系拟南芥根细胞自噬现象受到明显抑制,而At TOR突变体中并未有明显的变化。因此NADPH氧化酶很有可能参与At TOR对盐胁迫诱导自噬的信号通路的调控。该研究结果为进一步分析植物耐受性机理和自噬的信号通路提供理论依据。  相似文献   

11.
Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome harbors three genes annotated as gabT GABA transaminases. A DC3000 mutant lacking all three gabT genes was constructed and found to be unable to utilize GABA as a sole carbon and nitrogen source. In complete minimal media supplemented with GABA, the mutant grew less well than wild-type DC3000 and showed strongly reduced expression of hrpL and avrPto, which encode an alternative sigma factor and effector, respectively, associated with the type III secretion system. The growth of the gabT triple mutant was weakly reduced in Arabidopsis ecotype Landberg erecta (Ler) and strongly reduced in the Ler pop2-1 GABA transaminase-deficient mutant that accumulates higher levels of GABA. Much of the ability to grow on GABA-amended minimal media or in Arabidopsis pop2-1 leaves could be restored to the gabT triple mutant by expression in trans of just gabT2. The ability of DC3000 to elicit the hypersensitive response (HR) in tobacco leaves is dependent upon deployment of the type III secretion system, and the gabT triple mutant was less able than wild-type DC3000 to elicit this HR when bacteria were infiltrated along with GABA at levels of 1 mm or more. GABA may have multiple effects on P. syringae-plant interactions, with elevated levels increasing disease resistance.  相似文献   

12.
To begin to understand the interplay between autophagy and the hypersensitive response (HR), a type of programmed cell death (PCD) induced during plant innate immunity, we generated ATG6 antisense plants in the genetically tractable Arabidopsis thaliana system. AtATG6 antisense (AtATG6-AS) plants senesce early and are sensitive to nutrient starvation, suggestive of impairment of autophagic function in these plants. Additionally, these plants exhibited multiple developmental abnormalities, a phenomenon not observed in other AtATG mutants. AtATG6-AS plants produced fewer Monodansylcadaverine (MDC) and LysoTracker (LT) stained-autolysosomes in response to carbon and nitrogen starvation indicating that AtATG6 plays a role in the autophagic pathway in Arabidopsis. Interestingly, the level of AtATG6 mRNA in wild type Col-0 Arabidopsis plants is increased during the early phase of virulent and avirulent Pseudomonas syringae pv tomato (Pst) DC3000 infection suggesting that AtATG6 plays an important role during pathogen infection. In AtATG6-AS plants, HR-PCD induced upon infection with avirulent Pst DC3000 carrying the AvrRpm1 effector protein is not able to be contained at the infection site and spreads into uninfected tissue. Additionally, the disease-associated cell death induced by the infection of virulent Pst DC3000 bacteria is also partially misregulated in AtATG6-AS plants. Therefore, the AtATG6 antisense plants characterized here provide an excellent genetic model system to elucidate the molecular mechanisms by which autophagy regulates pathogen-induced cell death.  相似文献   

13.
Amino acid metabolic pathways are involved in the plant immune system. Pipecolic acid (Pip), a lysine-derived non-protein amino acid, acts as an important regulator of disease resistance. Here, we report the functions of Pip on tomato disease resistance. Tomato seedlings treated with 0.5 mM Pip showed increased resistance to Pst DC3000 and B. cinerea compared with the control. After pathogen infection, the expression of defence-related genes increased in plants pretreated with Pip, while reactive oxygen species (ROS) accumulation decreased. These data demonstrated that exogenous application of Pip induced resistance against Pst DC3000 and B. cinerea in tomatoes, possibly through the regulation of ROS accumulation and defence-related gene expression.  相似文献   

14.
Tomato stress-associated proteins (SAPs) belong to A20/AN1 zinc finger protein family, some of which have been shown to play important roles in plant stress responses. However, little is known about the functions and underlying molecular mechanisms of SAPs in plant immune responses. In the present study, we reported the function of tomato SlSAP3 in immunity to Pseudomonas syringae pv. tomato (Pst) DC3000. Silencing of SlSAP3 attenuated while overexpression of SlSAP3 in transgenic tomato increased immunity to Pst DC3000, accompanied with reduced and increased Pst DC3000-induced expression of SA signalling and defence genes, respectively. Flg22-induced reactive oxygen species (ROS) burst and expression of PAMP-triggered immunity (PTI) marker genes SlPTI5 and SlLRR22 were strengthened in SlSAP3-OE plants but were weakened in SlSAP3-silenced plants. SlSAP3 interacted with two SlBOBs and the A20 domain in SlSAP3 is critical for the SlSAP3-SlBOB1 interaction. Silencing of SlBOB1 and co-silencing of all three SlBOB genes conferred increased resistance to Pst DC3000, accompanied with increased Pst DC3000-induced expression of SA signalling and defence genes. These data demonstrate that SlSAP3 acts as a positive regulator of immunity against Pst DC3000 in tomato through the SA signalling and that SlSAP3 may exert its function in immunity by interacting with other proteins such as SlBOBs, which act as negative regulators of immunity against Pst DC3000 in tomato.  相似文献   

15.
Autophagy is a conserved intracellular process through which cytoplasmic components are degraded and recycled under stress conditions. In the innate immunity of higher plants, autophagy has either pro-survival or pro-death functions in pathogen-induced programmed cell death (PCD). In aged leaves, autophagy negatively regulates PCD by eliminating redundant salicylic acid. However, in young leaves, the specific pro-death mechanisms of autophagy and signaling pathways related to the autophagic process have not been elucidated. Here, we demonstrate that enhanced disease susceptibility 1 (EDS1) mediated the activation of autophagy and played a key role in the pro-death mechanism of autophagy during avirulent Pst DC3000 (AvrRps4) infection. The path through which autophagosomes enter the vacuole was blocked. Additionally, formation of the ATG12–ATG5 complex and the level of enzymatic activity associated with ATG8 cleavage decreased in eds1 mutants. The expression of EDS1 in atg5 mutants was also much lower than that in wild-type plants during pathogen-triggered PCD. These findings implied that EDS1 may regulate autophagy by affecting the activities of the two ubiquitin-like protein-conjugating pathways. Moreover, autophagy may regulate immunity-related PCD by affecting the expression of EDS1 in young plants. Our results provide important insights into the mechanisms of EDS1 in autophagy during infection with avirulent Pst DC3000 (AvrRps4) in Arabidopsis.  相似文献   

16.
Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell‐wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)‐derived peptide and its receptors, HAESA (HAE) and HAESA‐LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell‐wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA‐like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss‐of‐function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6‐HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6‐HAE/HSL2‐ADPG2 signaling pathway.  相似文献   

17.
Vesicle-associated membrane proteins 721 and 722 (VAMP721/722) are secretory vesicle-localized arginine-conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) to drive exocytosis in plants. They are involved in diverse physiological processes in plants by interacting with distinct plasma membrane (PM) syntaxins. Here, we show that synaptotagmin 5 (SYT5) is involved in plant defense against Pseudomonas syringae pv tomato (Pst) DC3000 by regulating SYP132-VAMP721/722 interactions. Calcium-dependent stimulation of in vitro SYP132-VAMP722 interaction by SYT5 and reduced in vivo SYP132-VAMP721/722 interaction in syt5 plants suggest that SYT5 regulates the interaction between SYP132 and VAMP721/722. We interestingly found that disease resistance to Pst DC3000 bacterium but not to Erysiphe pisi fungus is compromised in syt5 plants. Since SYP132 plays an immune function to bacteria, elevated growth of surface-inoculated Pst DC3000 in VAMP721/722-deficient plants suggests that SYT5 contributes to plant immunity to Pst DC3000 by promoting the SYP132-VAMP721/722 immune secretory pathway.  相似文献   

18.
Pseudomonas syringae pv. tomato DC3000 causes bacterial speck disease in tomato, and it elicits the hypersensitive response (HR) in non-host plants such as Nicotiana tabacum and Nicotiana benthamiana. The compatible and incompatible interactions of DC3000 with tomato and Nicotiana spp., respectively, result in plant cell death, but the HR cell death occurs more rapidly and is associated with effective plant defense. Both interactions require the Hrp (HR and pathogenicity) type III secretion system (TTSS), which injects Hop (Hrp outer protein) effectors into plant cells. Here, we demonstrate that HopPtoN is translocated into tomato cells via the Hrp TTSS. A hopPtoN mutant produced eightfold more necrotic 'speck' lesions on tomato leaves than did DC3000, but the mutant and the wild-type strain grew to the same level in infected leaves. In non-host N. tabacum leaves, the hopPtoN mutant produced more cell death, whereas a DC3000 strain overexpressing HopPtoN produced less cell death and associated electrolyte leakage in comparison with wild-type DC3000. Transient expression of HopPtoN via infection with a PVX viral vector enabled tomato and N. benthamiana plants to tolerate, with reduced disease lesions, challenge infections with DC3000 and P. syringae pv. tabaci 11528, respectively. HopPtoN showed cysteine protease activity in vitro, and hopPtoN mutants altered in the predicted cysteine protease catalytic triad (C172S, H283A and D299A) lost HR suppression activity. These observations reveal that HopPtoN is a TTSS effector that can suppress plant cell death events in both compatible and incompatible interactions.  相似文献   

19.
  • Plant immunity is regulated by a huge phytohormone regulation network. Ethylene(ET) and brassinosteroids (BRs) play critical roles in plant response to biotic stress; however, the relationship between BR and ET in plant immunity is unclear.
  • We used chemical treatments, genetic approaches and inoculation experiments to investigate the relationship between ET and BR in plant defense against Pst DC3000 in Nicotiana benthamiana.
  • Foliar applications of ET and BR enhanced plant resistance to Pst DC3000 inoculation, while treatment with brassinazole (BRZ, a specific BR biosynthesis inhibitor) eliminated the ET induced plant resistance to Pst DC3000. Silencing of DWARF 4(DWF4, a key BR biosynthetic gene), BRASSINOSTEROID INSENSITIVE 1 (BRI1, aBR receptor) and BRASSINOSTEROID-SIGNALING KINASE 1 (BSK1, downstream of BRI1) also neutralised the ET‐induced plant resistance to Pst DC3000. ET can induce callose deposition and reactive oxygen species (ROS) accumulation to resistPst DC3000, BRZ‐treated and gene‐silenced were completely eliminate this response.
  • Our results suggest BR is involved in ET‐induced plant resistance, the involvement of ET in plant resistance is possibly by the induction of callose deposition and ROS accumulation, in a BR‐dependent manner.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号