首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
Variability of expression of introduced marker genes was analysed in a large number of tobacco regenerants from anAgrobacterium-mediated transformation. In spite of standardization of sampling, considerable variation of GUS and NPTII expression was observed between individual transformants at different times of analysis and in different parts of the same plant. Organ-specificity of root versus leaf expression conferred by the par promoter from the haemoglobin gene ofParasponia andersonii in front of thegus gene showed a continuous spectrum. GUS expression in roots was found in 128 out of 140 plants; expression in leaves was found in 46 plants, and was always lower than in the corresponding roots. NPTII expression regulated by the nos promoter also showed a continuous spectrum. Expression levels were generally higher in roots than in leaves. Plants with high GUS expression in leaves showed high NPTII activity as well. A positive correlation between the level of NPTII expression and the numbers of integrated gene copies was noted. Chromosomal position effects and physiological determination are suggested as triggers for the variations. The transformed regenerated tobacco plants were largely comparable to clonal variants.  相似文献   

2.
3.
4.
We report on a novel chimeric gene that confers kanamycin resistance on tobacco plastids. The kan gene from the bacterial transposon Tn5, encoding neomycin phosphotransferase (NPTII), was placed under control of plastid expression signals and cloned between rbcL and ORF512 plastid gene sequences to target the insertion of the chimeric gene into the plastid genome. Transforming plasmid pTNH32 DNA was introduced into tobacco leaves by the biolistic procedure, and plastid transformants were selected by their resistance to 50 g/ml of kanamycin monosulfate. The regenerated plants uniformly transmitted the transplastome to the maternal progeny. Resistant clones resulting from incorporation of the chimeric gene into the nuclear genome were also obtained. However, most of these could be eliminated by screening for resistance to high levels of kanamycin (500 g/ml). Incorporation of kan into the plastid genome led to its amplification to a high copy number, about 10000 per leaf cell, and accumulation of NPTII to about 1% of total cellular protein.  相似文献   

5.
Summary We have cloned two types of variable copy number DNA sequences from the rice embryo genome. One of these sequences, which was cloned in pRB301, was amplified about 50-fold during callus formation and diminished in copy number to the embryonic level during regeneration. The other clone, named pRB401, showed the reciprocal pattern. The copy numbers of both sequences were changed even in the early developmental stage and eliminated from nuclear DNA along with growth of the plant. Sequencing analysis of the pRB301 insert revealed some open reading frames and direct repeat structures, but corresponding sequences were not identified in the EMBL and LASL DNA databases. Sequencing of the nuclear genomic fragment cloned in pRB401 revealed the presence of the 3rps12-rps7 region of rice chloroplast DNA. Our observations suggest that during callus formation (dedifferentiation), regeneration and the growth process the copy numbers of some DNA sequences are variable and that nuclear integrated chloroplast DNA acts as a variable copy number sequence in the rice genome. Based on data showing a common sequence in mitochondria and chloroplast DNA of maize (Stern and Lonsdale 1982) and that the rps12 gene of tobacco chloroplast DNA is a divided gene (Torazawa et al. 1986), it is suggested that the sequence on the inverted repeat structure of chloroplast DNA may have the character of a movable genetic element.  相似文献   

6.
7.
8.
A protocol for chloroplast transformation of an elite rapeseed cultivar (Brassica napus L.) was developed based on optimized conditions for callus induction and regeneration from cotyledonary tissues. Comparison of six different media with three elite cultivars showed that B5 medium plus 3 mg/l AgNO3 supplemented with 0.6 mg/l 2,4-dichlorophenoxyacetic acid and 0.2 mg/l 6-furfurylaminopurine was optimal for callus formation and maintenance without differentiation, while the medium suitable for regeneration was B5 medium supplemented with 1 mg/l 6-benzylaminopurine, 1 mg/l 6-furfurylaminopurine and 0.5 mg/l α-naphthaleneacetic acid. A rapeseed-specific chloroplast transformation vector was constructed with the trnI and trnA sequences amplified from the rapeseed chloroplast genome using two primers designed according to Arabidopsis homologs. The aadA gene was used as a selection marker regulated by the ribosome-binding site from the bacteriophage T7 gene 10L, the tobacco 16S rRNA promoter and the psbA terminator. After bombardment, cotyledonary segments were cultured for callus formation on media containing 10 mg/l spectinomycin and regeneration was carried out on medium with 20 mg/l spectinomycin. Heteroplasmic plastid transformants were isolated. An overall efficiency for the chloroplast transformation was one transplastomic plant per four bombarded plates. Southern blot analyses demonstrated proper integration of the target sequence into the rapeseed chloroplast genome via homologous recombination. The expression of the aadA gene was confirmed by Northern blot analysis. Analysis of T1 transplastomic plants revealed that the transgenes integrated into the chloroplast were inheritable with a ratio of about 8%. These results suggest that rapeseed may be a suitable crop for chloroplast transformation with cotyledons as explants under appropriate conditions.  相似文献   

9.
A soybean shoot cDNA expression library was screened with polyclonal antibodies raised against red beet complex I and several clones were identified. One clone, consisting of a 1 kb insert, was fully sequenced. The sequence of 1025 bp was found to contain two extended open reading frames and the proteins encoded were identified as the ndhK and ndhJ products of the chloroplast genome. Nuclear, mitochondrial and chloroplast DNA was isolated and probed with a ndhK-specific probe. The chloroplast DNA contained a single copy of the cloned insert. With nuclear DNA, positively hybridising bands of 1.2, 2.7 and 3.2 kb were observed indicating that at least one gene homologous to ndhK of the chloroplast genome, is also present in the nucleus. The mitochondrial DNA did not hybridise with the ndhK probe. Western analysis of thylakoid proteins with the mitochondrial complex I antibodies revealed several bands. It is suggested that soybean contains two copies of the ndhK gene, one, on the plastid genome, coding for a subunit of a chloroplast NAD(P)H dehydrogenase, and the other, in the nucleus, coding for a subunit of mitochondrial complex I.  相似文献   

10.
We have isolated and analyzed a pre-ferredoxin gene from Arabidopsis thaliana. This gene encodes a 148 amino acid precursor protein including a chloroplast transit peptide of 52 residues. Southern analysis shows the presence of a single copy of this ferredoxin (Fd) gene in the A. thaliana genome. Its expression is tissue-specific and positively affected by light. Response times, both to dark and light conditions, are remarkably rapid.A chimeric gene consisting of a 1.2 kb Fd promoter fragment fused to the -glucuronidase reporter gene was transferred to tobacco. This fusion gene is expressed in a tissue-specific way; it shows high levels of expression in green leaves, as compared to root tissue.  相似文献   

11.
The pea plastocyanin gene in a 3.5 kbp Eco RI fragment of pea nuclear DNA was introduced into tobacco by Agrobacterium-mediated transformation. Regenerated plants contained pea plastocyanin located within the chloroplast thylakoid membrane system. Analysis of seedlings from a self-pollinated transgenic plant containing a single copy of the pea plastocyanin gene indicated that seedlings homozygous for the pea gene contained almost twice as much pea plastocyanin as seedlings hemizygous for the pea gene. Homozygous seedlings contained approximately equal amounts of pea and tobacco plastocyanins. The amount of tobacco plastocyanin in leaves of transgenic plants was unaffected by the expression of the pea plastocyanin gene. The mRNA from the pea gene in tobacco was indistinguishable by northern blotting and S1 nuclease protection from the mRNA found in pea. In both pea and transgenic tobacco, expression of the pea plastocyanin gene was induced by light in leaves but was suppressed in roots. Pea plastocyanin free of contaminating tobacco plastocyanin was purified from transgenic tobacco plants and shown to be indistinguishable from natural pea plastocyanin by N-terminal protein sequencing and 1H NMR spectroscopy.  相似文献   

12.
The Arabidopsis thaliana (L.) Heynh. minD gene (AtMinD1) was isolated and constitutively expressed in tobacco (Nicotiana tabacum L.) plants using the CaMV 35S promoter. Confocal and electron-microscopic analysis of the AtMinD1 transgenic tobacco lines revealed that the chloroplasts were abnormally large and fewer in number compared with wild-type tobacco plants. The abnormal chloroplasts were less prevalent in guard cells than in mesophyll cells. Chloroplast and nuclear gene expression was not significantly different in AtMinD1-overexpressing plants relative to wild-type tobacco plants. Chloroplast DNA copy number was not affected, based on the relative level of the rbcL gene in transgenic plants. Transgenic tobacco plants constitutively overexpressing AtMinD1 were completely normal phenotypically with respect to growth and development, and also displayed normal photosynthetic electron transport rates. These results show that the Arabidopsis MinD1 gene also functions in a heterologous system and confirm the role of the MinD protein in regulation of chloroplast division.  相似文献   

13.
In higher plants, plastid and mitochondrial genomes occur at high copy numbers per cell. Several recent publications have suggested that, in higher plants like Arabidopsis and maize, chloroplast DNA is virtually absent in mature and old leaves. This conclusion was mainly based on DAPI staining of isolated chloroplasts. If correct, the finding that chloroplasts in mature leaves lack DNA would change dramatically our understanding of gene expression, mRNA stability and protein stability in chloroplasts. In view of the wide implications that the disposal of chloroplast DNA during leaf development would have, we have reinvestigated the age dependency of genome copy numbers in chloroplasts and, in addition, tested for possible changes in mitochondrial genome copy number during plant development. Analyzing chloroplast and mitochondrial DNA amounts in Arabidopsis and tobacco plants, we find that organellar genome copy numbers remain remarkably constant during leaf development and are present in essentially unchanged numbers even in the senescing leaves. We conclude that, during leaf development, organellar gene expression in higher plants is not significantly regulated at the level of genome copy number and we discuss possible explanations for the failure to detect DNA in isolated chloroplasts stained with DAPI.  相似文献   

14.
The chloroplast genome ofChlamydomonas reinhardtii has been transformed with a chimeric gene consisting of the chloroplastatpA promoter and the bacterial gene for aminoglycoside adenine transferase (aadA). TheatpA-aadA cassette has been placed within the chloroplast DNAEcoRI restriction enzyme fragment 14, or within the chloroplastBamH1 fragment 10. The chimeric constructs were introduced into the chloroplast by particle bombardment. Integration of the cassette into chloroplast DNA then occurred via homologous recombination of sequences flanking the cassette with their corresponding chloroplast sequences. We demonstrate that the chloroplastatpA promoter inatpA-aadA routinely recombines with its endogenous counterpart, resulting in heteroplasmic chloroplast DNA populations that may persist for many generations. The heterologous gene does not require a 3 inverted repeat sequence for its expression. TheatpA-aadA gene copy number, which is dictated here by its position in the chloroplast genome, is proportional to the steady state level ofatpA-aadA mRNA. However, neither genomic position, gene copy number, or mRNA level have a significant effect on cellular resistance to spectinomycin, nor activity of theaadA gene productin vitro. These results suggest that, in the case ofaadA, the limiting step for expression of this gene is at the translational or post-translational level. TheatpA-aadA cassette should prove a useful model for future studies on the maintenance and expression of heterologous genes inC. reinhardtii chloroplasts.  相似文献   

15.
The chloroplast psbA gene from the green unicellular alga Chlamydomonas reinhardii has been localized, cloned and sequenced. This gene codes for the rapidly-labeled 32-kd protein of photosystem II, also identified as as herbicide-binding protein. Unlike psbA in higher plants which is found in the large single copy region of the chloroplast genome and is uninterrupted, psbA in C. reinhardii is located entirely within the inverted repeat, hence present in two identical copies per circular chloroplast genome, and contains four large introns. These introns range from 1.1 to 1.8 kb in size and fall into the category of Group I introns. Two of the introns contain open reading frames which are in-frame with the preceding exon sequences. We present the nucleotide sequence for the C. reinhardii psbA 5'-and 3' -flanking sequences, the coding region contained in five exons and the deduced amino acid sequence. The algal gene codes for a protein of 352 amino acid residues which is 95% homologous, excluding the last eight amino acid residues, with the higher plant protein.  相似文献   

16.
17.
Summary A 3.4-kbp nuclear (n) DNA sequence has greater than 99% sequence homology to three segments of the chloroplast (cp) genes rps2, psbD/C, and psaA respectively. Each of these cpDNA segments is less than 3 kbp in length and appears to be integrated, at least in part, into several (>5) different sites flanked by unique sequences in the nuclear genome. Some of these sites contain longer homologies to the particular genes, while others are only homologous to smaller parts of the cp genes. Both the cpDNA fragments found in the nuclear genome and their flanking nDNA sequences are invested with short repeated A-T rich sequences but, apart from a hexanucleotide sequence and a palindromic sequence identified near each recombination point, there is no obvious structure that can suggest a mechanism of DNA transfer from the chloroplast to the nucleus in spinach.  相似文献   

18.
19.
A geranium (Pelargonium graveolens) chloroplast translational elongation factor EF-Tu (tufA) cDNA was isolated. The geranium tufA cDNA is 1,584 bp long with 20 bp of 5 untranslated region (UTR) and 139 bp of 3 UTR. It encodes 474 amino acids including a putative chloroplast transit peptide of 65 amino acids. The deduced polypeptides of the geranium tufA cDNA contains four GTP binding sequences in its N-terminal region and two chloroplast EF-Tu signature regions in the C-terminal region. The predicted molecular weight of the mature geranium chloroplast EF-Tu protein was about 45,000 and its amino acid sequence identity with the chloroplast EF-Tu proteins of tobacco, pea, Arabidopsis, rice, and soybean ranges from 85% to 91%. The geranium tufA appears to exist as a single copy gene like Arabidopsis and rice, whereas other known dicot plants have more than one copy in their nuclear genomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号