首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
林植华  樊晓丽  陆洪良  罗来高  计翔 《生态学报》2010,30(10):2541-2548
在许多蜥蜴种类中,尾自切是一种主要的逃避天敌捕食的防御性策略。虽然断尾使蜥蜴获得短期的生存利益,但同时也需为此承受多方面的代价。利用从丽水采集的117条蓝尾石龙子来评价该种动物断尾的能量和运动代价。81条(约69%)石龙子至少经历过1次尾自切。断尾个体中,原先断尾事件的发生频率在不同尾区间存在显著差别,但两性间无差别。将实验组17条具完整尾的石龙子依次切去3个尾段,然后测定断尾前后石龙子的运动表现以及每个尾段、身体各部分中的脂肪含量。另15条具完整尾的石龙子作为对照组,仅测量其运动表现。尾部的脂肪含量与尾基部宽呈正相关,说明具较粗尾部的石龙子一般具有相当较多的尾部储能。尾部脂肪含量随尾长呈非等比例分布,大部分脂肪集中于尾近基部端。断尾几乎不影响蓝尾石龙子的运动表现,仅当大部分尾部被切除时疾跑速有较小程度的降低。显示了蓝尾石龙子因遭遇天敌捕食攻击或其它因素作用而产生的部分断尾可能并不会导致严重的能量和运动代价。由于野外种群蓝尾石龙子个体的断尾情况主要发生在尾近基部或中部位置,因此可以认为自然条件下该种动物的尾自切通常会遭受明显的能量和运动代价。  相似文献   

2.
Caudal autotomy, or voluntary self-amputation of the tail, is a common and effective predator evasion mechanism used by most lizard species. The tail contributes to a multitude of biological functions such as locomotion, energetics, and social interactions, and thus there are often costs associated with autotomy. Notably, relatively little is known regarding bioenergetic costs of caudal autotomy in lizards, though key morphological differences exist between the original and regenerated tail that could alter the biochemistry and energetics. Therefore, we investigated lizard caudal biochemical content before and after regeneration in three gecko and one skink species. Specifically, we integrated biochemical and morphological analyses to quantify protein and lipid content in original and regenerated tails. All lizards lost significant body mass, mostly protein, due to autotomy and biochemical results indicated that original tails of all species contained a greater proportion of protein than lipid. Morphological analyses of two gecko species revealed interspecific differences in protein and lipid content of regenerated lizard tails. Results of this study contribute to our understanding of the biochemical consequences of a widespread predator evasion mechanism.  相似文献   

3.
Many animals lose and regenerate appendages, and tail autotomy in lizards is an extremely well-studied example of this. Whereas the energetic, ecological and functional ramifications of tail loss for many lizards have been extensively documented, little is known about the behaviour and neuromuscular control of the autotomized tail. We used electromyography and high-speed video to quantify the motor control and movement patterns of autotomized tails of leopard geckos (Eublepharis macularius). In addition to rhythmic swinging, we show that they exhibit extremely complex movement patterns for up to 30 min following autotomy, including acrobatic flips up to 3 cm in height. Unlike the output of most central pattern generators (CPGs), muscular control of the tail is variable and can be arrhythmic. We suggest that the gecko tail is well suited for studies involving CPGs, given that this spinal preparation is naturally occurring, requires no surgery and exhibits complex modulation.  相似文献   

4.
Abstract Many animals autotomize their tails to facilitate escape from predators. Although tail autotomy can increase the likelihood of surviving a predatory encounter, it may entail subsequent costs, including reduced growth, loss of energy stores, a reduction in reproductive output, loss of social status and a decreased probability of survival during subsequent encounters with predators. To date, few studies have investigated the potential fitness costs of tail autotomy in natural populations. I investigated whether tail loss influenced survival, growth and territory occupation of juvenile velvet geckos Oedura lesueurii in a population where predatory snakes were common. During the 3‐year mark–recapture study, 32% of juveniles voluntarily autotomized their tails when first captured. Analysis of survival using the program mark showed that voluntary tail autotomy did not influence the subsequent survival of juvenile geckos. Survival was age‐dependent and was higher in 1‐year‐old animals (0.98) than in hatchlings (0.76), whereas recapture probabilities were time‐dependent. Growth rates of tailed and tailless juveniles were very similar, but tailless geckos had slow rates of tail regeneration (0.14 mm day−1). Tail autotomy did not influence rock usage by geckos, and both tailed and tailless juveniles used few rocks as diurnal retreat sites (means of 1.64 and 1.47 rocks, respectively) and spent long time periods (85 and 82 days) under the same rocks. Site fidelity may confer survival advantages to juveniles in populations sympatric with ambush foraging snakes. My results show that two potential fitness costs of tail autotomy – decreased growth rates and a lower probability of survival – did not occur in juveniles from this population. However, compared with juveniles, significantly fewer adult geckos (17%) voluntarily autotomized their tails during capture. Because adults possess large tails that are used for lipid storage, the energetic costs of tail autotomy are likely to be much higher in adult than in juvenile O. lesueurii.  相似文献   

5.
Caudal autotomy is a defense mechanism used by numerous lizards to evade predators, but this entails costs. We collected 294 adult Chinese skinks (Eumeces chinensis) from a population in Lishui (eastern China) to evaluate energetic and locomotor costs of tail loss. Of the 294 skinks, 214 (c. 73%) had previously experienced caudal autotomy. Neither the proportion of individuals with regenerated tails nor the frequency distribution of locations of the tail break differed between sexes. We successively removed four tail segments from each of the 20 experimental skinks (adult males) initially having intact tails. Lipid content in each removed tail segment was measured, and locomotor performance (sprint speed, the maximal length traveled without stopping and the number of stops in the racetrack) was measured for each skink before and after each tail-removing treatment. Another independent sample of 20 adult males with intact tails was measured for locomotor performance to serve as controls for successive measurements taken for the experimental lizards. Caudal lipids were disproportionately stored along the length of the tail, with most lipids being aggregated in its proximal portion. Tail loss significantly affected sprint speed, but not the maximal length of, or the number of stops during the sprint. However, the adverse influence of tail loss on sprint speed was not significant until more than 51% of the tail (in length) was lost. Our data show that partial tail loss due to predatory encounters or other factors may not severely affect energy stores or locomotor performance in E. chinensis. As tail breaks occurred more frequently in the proximal portion of the tail in skinks collected from the field, we conclude that caudal autotomy occurring in nature often incurs substantial energetic and locomotor costs in E. chinensis.  相似文献   

6.
Autotomy, voluntary shedding of body parts to permit escape, is a theoretically interesting defense because escape benefit is offset by numerous costs, including impaired future escape ability. Reduced sprint speed is a major escape cost in some lizards. We predicted that tail loss causes decreased speed in males and previtellogenic females, but not vitellogenic females already slowed by mass gain. In the striped plateau lizard, Sceloporus virgatus , adults of both sexes are subject to autotomy, and females undergo large increases in body condition (mass/length) during vitellogenesis. Time required for running 1 m was similar in intact autotomized males and previtellogenic females, but increased by nearly half after autotomy. Vitellogenic females were slower than other lizards when intact, but their speed was unaffected by autotomy. Following autotomy, speeds of all groups were similar. Thus, speed costs of autotomy vary with sex and reproductive condition: decreased running speed is not a cost of autotomy in vitellogenic females or presumably gravid females. Costs of autotomy are more complex than previously known. Speed and other costs might interact in unforseen ways, making it difficult to predict whether strategies to compensate for diminished escape ability differ with reproductive condition in females.  相似文献   

7.
Tail autotomy as a defence against predators occurs in many species of lizard. Although tail autotomy may provide an immediate benefit in terms of survival it may nevertheless be costly due to other functions of the tail. For example, tail autotomy may affect the locomotory performance of lizards during escape. We investigated the influence of tail autotomy on the escape performance of the Cape Dwarf Gecko, Lygodactylus capensis, on a vertical and a horizontal surface. Autotomized geckos were significantly slower than intact geckos during vertical escape, whereas tail autotomy did not influence the horizontal escape speed. Backward falling of the autotomized geckos on the vertical platform may explain the reduced speed. In addition, tail autotomy did not significantly affect body curvature and stride length of the geckos. The observed decrease of escape speed on a vertical platform may influence the habitat use and behaviour of these geckos. Ecological consequences resulting from tail autotomy are discussed in light of these findings.  相似文献   

8.
Byron S. Wilson 《Oecologia》1992,92(1):145-152
Summary Caudal autotomy is an effective anti-predator mechanism used by many lizard species. Fitness benefits of surviving a predatory attack are obvious, although lizards that autotomize their tails may be at greater risk during subsequent encounters with predators than lizards with complete tails. In previous laboratory studies, tail-less lizards were more vulnerable to capture by predators, but little is known about the relative survival of tailed versus tail-less lizards in nature. This study reports on significant associations between naturally incurred tail injuries and the subsequent risk of mortality in 7 populations of the lizard Uta stansburiana. I used standard mark-recapture techniques to document survival and quantified tail injuries by estimating tail completeness. I then used sampled randomization tests to compare intitial tail completeness values of surviving versus non-surviving lizards. I evaluated overall patterns by comparising the means of tail completeness values of survivors versus non-survivors among mark-recapture sequences. Lizards with incomplete tails suffered higher mortality in the field, although this was not true for every comparison considered (i.e., for every mark-recapture sequence analyzed), and the overall trend was much stronger for adult males than for either adult females or juveniles. Higher mortality among lizards with incomplete tails is presumably a consequence of increased vulnerability to capture by predators. Vulnerability to predation of tail-injured lizards may be confounded by reduced social status in this species, because social subordination can result in the occupation of an inferior home range.  相似文献   

9.
Prey must balance the conflicting demands of foraging and defensive behavior. Foraging under the threat of predation may be further complicated among species that engage in caudal autotomy, the loss of a portion of the tail at preformed breakage planes, because the tail may serve as an important energy storage organ and contribute to motility, culminating in a trade-off between foraging and predator avoidance. As a result of the advantages conferred by the presence of a tail, individuals that have recently undergone autotomy may be more motivated to forage despite elevated levels of threat indicated by predator kairomones. We used a full factorial design to evaluate the combined effects of body size, exposure to predator kairomones, and experience with autotomy on the latency to strike at Drosophila prey, number of strikes, and prey captured per strike by Allegheny Mountain dusky salamanders (Desmognathus ochrophaeus). In our study, caudal autotomy was the only significant main effect and influenced both the latency to attack prey and the number of strikes attempted. In terms of latency to attack prey, there was a significant interaction between body size and autotomy such that “small” salamanders (≤3.2 cm SVL) without tails delayed their foraging behavior. In terms of the number of strikes toward prey, there was a significant interaction between autotomy and exposure to predator kairomones such that individuals with intact tails exhibited a greater number of strikes, with the exception of the “large” (>3.2 cm SVL) salamanders, which performed fewer strikes when exposed to the snake kairomones. There was no significant effect on foraging efficiency, although the trend in the data suggests that autotomized individuals forage more efficiently. This study was designed to evaluate the confluence of factors related to size, caudal autotomy, and exposure to stimuli from predators and hints at the magnitude of caudal autotomy on antipredator decision-making. Our data suggest that despite the importance of tail tissue for energy storage, locomotion, and mating, salamanders without tails are cautious when foraging under elevated risk.  相似文献   

10.
We quantified muscle activity in tails of lizards (Gekko gecko) during running and after autotomy of the tail. We chose different animals and varied where we broke the tails in order to obtain three experimental preparations having: no regenerated tissue or prior tail loss (non-regenerated), a large regenerated portion and a few original caudal vertebrae (partially regenerated), and only regenerated tissue (fully regenerated). All observed axial motor patterns were rhythmic. During running of intact animals, muscles in non-regenerated tails were activated in an alternating, unilateral pattern that was propagated posteriorly. After autotomy, non-regenerated tails had unilateral muscle activity that alternated between the left and right sides and propagated anteriorly. Autotomized, partially regenerated tails had unilateral, alternating muscle activity that lacked any longitudinal propagation. Autotomized, fully regenerated tails had periodic muscle activity that occurred simultaneously for both left and right sides and all longitudinal positions. Neither tactile stimulation nor removal of the tail tip prior to autotomizing the tail affected the motor pattern. Several features of the motor pattern of autotomized tails changed significantly with increased time after autotomy. Autotomized tails with one or more spinal segments moved longer and more vigorously than autotomized tails consisting entirely of regenerated (unsegmented) tissue.Abbreviations AREA rectified integrated area - CYCDUR cycle duration or time between the onsets of successive bursts for a single channel - DUTY duty factor = EMG duration/CYCDUR - EMG electromyogram - EMGDUR EMG duration - INTENSITY = AREA/EMGDUR - ISPL intersegmental phase lag = PLAG/number of intervening muscle segments - LAG among site lag time = difference in onset times of adjacent ipsilateral electrode sites - PLAG phase lag = LAG/CYCDUR - RELISPL relative intersegmental phase lag = RELPLAG/number of intervening muscle segments - RELPLAG relative phase lag = LAG/EMGDUR  相似文献   

11.
《Zoology (Jena, Germany)》2015,118(3):183-191
The tail of many species of lizard is used as a site of fat storage, and caudal autotomy is a widespread phenomenon among lizards. This means that caudal fat stores are at risk of being lost if the tail is autotomized. For fat-tailed species, such as the leopard gecko, this may be particularly costly. Previous work has shown that tail regeneration in juveniles of this species is rapid and that it receives priority for energy allocation, even when dietary resources are markedly reduced. We found that the regenerated tails of juvenile leopard geckos are more massive than their original counterparts, regardless of dietary intake, and that they exhibit greater amounts of skeleton, inner fat, muscle and subcutaneous fat than original tails (as assessed through cross-sectional area measurements of positionally equivalent stations along the tail). Autotomy and regeneration result in changes in tail shape, mass and the pattern of tissue distribution within the tail. The regenerated tail exhibits enhanced fat storage capacity, even in the face of a diet that results in significant slowing of body growth. Body growth is thus sacrificed at the expense of rapid tail growth. Fat stores laid down rapidly in the regenerating tail may later be used to fuel body growth or reproductive investment. The regenerated tail thus seems to have adaptive roles of its own, and provides a potential vehicle for studying trade-offs that relate to life history strategy.  相似文献   

12.
1. Many lizards will lose their tail through autotomy as an antipredator device even though there must be significant costs during tail regeneration.
2. Parasites are energetically costly to the host, and may reduce the rate of cell regeneration. The relation between the presence of haemogregarines (phylum Sporozoa) and the rate of tail regeneration in the Common Lizard Lacerta vivipara (Jacquin) was examined.
3. Experimentally induced autotomy in parasitized lizards resulted in a significantly reduced rate of tail regeneration compared with non-parasitized lizards. On the other hand, tail loss was not associated with an abnormal increase of parasite load, suggesting that the physiological stress (induced by tail loss) did not cause a decrease in parasite defence.  相似文献   

13.
Abstract Caudal autotomy is an effective defensive strategy used by many lizards to facilitate escape during predatory encounters. However, it has several potentially severe consequences, including a range of energetic costs that are believed to result from the depletion of caudal lipid reserves during tail loss. In this study we examined the possible effect of caudal autotomy on the energetic reserves of a small viviparous skink, Niveoscincus metallicus (O'Shaughnessy 1874). Animals of each sex were collected on three occasions to assess the distribution of lipid stores. In addition, the frequency and position of naturally occurring tail breaks were determined. Both abdominal and caudal lipid stores are present in N. metallicus; however, caudal fat bodies comprise the majority (55–78%) of these fat reserves. Temporal variation in fat body mass, both abdominal and caudal, was evident. There was a significant relationship between the two fat stores, which was distorted in pregnant females, when relatively more fat was stored in the tail. Examination of the distribution of caudal fat in the tail revealed that the majority (90–95%) occurs within the proximal third of the tail. The remainder is located in the middle portion of the tail, with no reserves in the most distal tail section. During late pregnancy, females store relatively more fat closer to the body. The frequency of tail loss in a natural population of N. metallicus was extremely high (78%). Tail breaks were normally distributed along the length of the tail (i.e. most near the middle and fewer distal and proximal breaks). Thus there was a relatively high chance of some lipid depletion as a result of tail loss, but because 76% of breaks occur in the middle and distal thirds of the tail, there is a high probability that tail loss results in only minimal (i.e. <10%) lipid depletion. This is the first instance where both the energetic ‘value’ of the tail and the likelihood of lipid depletion during tail loss have been determined in a lizard. Overall, the combination of the aggregation of caudal fat reserves and position of naturally occurring tail breaks may enable N. metallicus to combine caudal fat storage and tail autotomy with minimal conflict.  相似文献   

14.
The same display may be used in different contexts to convey different messages, or may have other, non-signaling functions. Several lines of evidence suggest that vertical tail curling, a previously documented social display in the lizard Leiocephalus carinatus , has antipredatory functions that may include pursuit deterrence and deflection of attacks from the body to the tail, which can be autotomized. An antipredatory role of tail curling is suggested by its more frequent occurrence when a predator is approaching than moving away, its greater frequency and intensity when a lizard is approached by a predator than when it moves spontaneously, and its greater frequency when the predator approaches directly rather than on a path bypassing the lizard. Evidence is presented contradicting use of tail curling for flash concealment or as an alarm signal to conspecifics. A pursuit-deterrent function of tail curling is suggested by its (1) more frequent use by lizards close to a refuge than those further from a refuge, (2) greater frequency during direct approaches by predators, and (3) much greater frequency when a predator is far enough away for pursuit to be deterred than when the predator is close enough to pose a high risk of capture. Lizards fled into a refuge without tail curling when the predator was very close, but often stopped outside a refuge while displaying the curled tail when the predator was farther away. Tail curling also may deflect attacks to the autotomizable tail, as suggested by its occurrence during spontaneous movements when no predator is approaching and by the high frequency of completely uncurled tails among individuals under bushes. The role of the tail in autotomy may facilitate evolution of pursuit-deterrent signals involving the tail.  相似文献   

15.
Many species of lizards use caudal autotomy as a defense strategy to avoid predation, but tail loss entails costs. These topics were studied experimentally in the northern grass lizard, Takydromus septentrionalis. We measured lipids in the three-tail segments removed from each of the 20 experimental lizards (adult females) initially having intact tails to evaluate the effect of tail loss on energy stores; we obtained data on locomotor performance (sprint speed, the maximal length traveled without stopping and the number of stops in the racetrack) for these lizards before and after the tail-removing treatments to evaluate the effect of tail loss on locomotor performance. An independent sample of 20 adult females that retained intact tails was measured for locomotor performance to serve as controls for successive measurements taken for the experimental lizards. The lipids stored in the removed tail was positively correlated with tailbase width when holding the tail length constant, indicating that thicker tails contained more lipids than did thinner tails of the same overall length. Most of the lipids stored in the tail were concentrated in the proximal portion of the tail. Locomotor performance was almost unaffected by tail loss until at least more than 71% of the tail (in length) was lost. Our data show that partial tail loss due to predatory encounters or other factors may not severely affect energy stores and locomotor performance in T. septentrionalis.  相似文献   

16.
Autotomy and cannibalism increase the complexity of the life history, population structure, and population dynamics of a species. Species in which autotomy is triggered by cannibalism have rarely been studied. It has been hypothesized that in the intertidal gastropod Agaronia propatula, autotomized tissues are highly attractive to cannibals and so increase the victim’s chance to escape. We tested the hypothesis by presenting autotomized ‘tails’ to foraging animals. The attack rates on autotomized ‘tails’ were lower than those on artificial objects reported previously. Autonomously moving autotomized ‘tails’ were more frequently ignored than non-moving and artificially moved ‘tail’ pieces. Thus, autotomized tissue repelled rather than attracted potential cannibals. Autotomy in A. propatula does not help to defend against cannibalism by offering the cannibal an attractive food item for consumption. It seems possible, though, that autotomized conspecifics are less attractive to cannibals than intact ones due to a repelling action of autotomized tissues.  相似文献   

17.
Caudal autotomy is a dramatic antipredator adaptation where prey shed their tail in order to escape capture by a predator. The mechanism underlying the effectiveness of caudal autotomy as a pre‐capture defense has not been thoroughly investigated. We tested two nonexclusive hypotheses, that caudal autotomy works by providing the predator with a “consolation prize” that makes it break off the hunt to consume the shed tail, and the deflection hypothesis, where the autotomy event directs predator attacks to the autotomized tail enabling prey escape. Our experiment utilized domestic dogs Canis familiaris as model predator engaged to chase a snake‐like stimulus with a detachable tail. The tail was manipulated to vary in length (long versus short) and conspicuousness (green versus blue), with the prediction that dog attacks on the tail should increase with length under the consolation‐prize hypothesis and conspicuous color under the deflection hypothesis. The tail was attacked on 35% of trials, supporting the potential for pre‐capture autotomy to offer antipredator benefits. Dogs were attracted to the tail when it was conspicuously colored, but not when it was longer. This supports the idea that deflection of predator attacks through visual effects is the prime antipredator mechanism underlying the effectiveness of caudal autotomy as opposed to provision of a consolation prize meal.  相似文献   

18.
Locomotor performance affects foraging efficiency, predator avoidance and consequently fitness. Agility and speed determine the animal's social status and reflect its condition. In this study, we test how predatory pressure and parasite load influences locomotor performance of wild specimens of the sand lizard Lacerta agilis. Animals were chased on a 2-metre racetrack. Lizards with autotomy ran significantly faster than lizards with an intact tail, but there was no significant difference in running speed between individuals with fresh caudal autotomy and regenerated tails. Parasite presence and load, age and sex had no significant effect on speed. Our results indicate that autotomy either alters locomotory behaviour or that individuals with autotomised tails were those that previously survived contact with predators, and therefore represented a subgroup of the fastest individuals. Therefore, in general, predatory pressure but not parasites affected locomotor performance in lizards.  相似文献   

19.
We investigated two predictions regarding the incidence of tail regeneration in lizards for three populations of brown anoles exposed to varying predation levels from the same predator (cats). Firstly although inefficient predators are likely to increase the incidence of regenerated tails (i.e. lizards can escape through tail autotomy), highly efficient predators will kill and eat the lizard and thus leave no evidence of autotomy. At the site with no cats, only 4% of anoles demonstrated signs of tail regeneration. This value was not significantly different from the site where feral cats (i.e. ‘efficient’ predators that would capture prey to eat, as supported by behavioural observation) were present (7%). By contrast, 25% of anoles present at the site with pet cats (well‐fed domesticated cats that caught and played with anoles, i.e. were ‘inefficient’ predators) exhibited regenerated tails. Secondly, more obvious lizards are more susceptible to predation attempts. Supporting this hypothesis, our data indicate a higher incidence of regenerated tails (28%) was recorded amongst adult males (which are territorial, occupying exposed positions) compared to females and subadult males (17%) or juveniles (1%). In conclusion, the behaviour of both the predator and the lizard influences the frequency of regenerated tails in brown anoles. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 648–656.  相似文献   

20.
Caudal autotomy, the ability to shed the tail, is common in lizards as a response to attempted predation. Since Arnold's substantial review of caudal autotomy as a defence in reptiles 20 years ago, our understanding of the costs associated with tail loss has increased dramatically. In this paper, we review the incidence of caudal autotomy among lizards (Reptilia Sauria) with particular reference to questions posed by Arnold. We examine tail break frequencies and factors that determine occurrence of autotomy in natural populations (including anatomical mechanisms, predation efficiency and intensity, microhabitat preference, sex and ontogenetic differences, as well as intraspecific aggression). We also summarize the costs associated with tail loss in terms of survivorship and reproduction, focusing on potential mechanisms that influence fitness (i.e. locomotion costs, behavioural responses and metabolic costs). Finally, we examine the factors that may influence the facility with which autotomy takes place, including regeneration rate, body form and adaptive behaviour. Taking Arnold's example, we conclude with proposals for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号