首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane cofactor protein (MCP or CD46), a widely distributed complement regulatory human protein, is a cell surface receptor for many pathogens including group A streptococci (GAS). The surface M protein of GAS binds CD46 and mediates GAS adherence to keratinocytes. In the present study, we studied the role of CD46 in GAS invasion of human lung epithelial cells, A549. Anti-CD46 antibody which specifically blocks the domain to which M protein binds inhibited adherence to and invasion of A549 cells by GAS. Moreover, downregulation of CD46 expression on A549 by RNA interference resulted in reduced invasion of these cells by GAS. A mutant form of CD46 with a deletion in the cytoplasmic domain was overexpressed in A549 cells, which resulted in partial inhibition of invasion. This indicates that the cytoplasmic tail is required for CD46 to promote invasion by GAS. Invasion assays with Lactococcus lactis that express M protein demonstrated the dependence of CD46-promoted invasion on interaction with M protein. In addition, CD46-mediated invasion was also found to be dependent on the extracellular matrix protein fibronectin.  相似文献   

2.
为研究hCD46在菌毛介导的淋病奈瑟菌宿主特异性黏附过程中的作用。用连接PCR技术扩增出启动子与cDNA相连的hCD46小基因,并将其置换出pcDNA3.1载体中的CMV启动子,构建成重组真核表达载体pCD46。转染COS-1细胞后用间接免疫荧光法检测到hCD46 cDNA在其自身启动子的指导下可在COS-1细胞膜表面有效表达,Western blotting检测表明表达产物的分子正确,用流式细胞术分选表达hCD46的基因转染细胞COS-1-46。细菌黏附实验显示菌毛阳性淋病奈瑟菌临床分离株对COS-1-46细胞有较强的黏附性。提示hCD46是菌毛介导的淋病奈瑟菌特异性黏附于人黏膜细胞的一种重要受体,hCD46小基因可用于淋病奈瑟菌感染转基因小鼠模型的制备。  相似文献   

3.
Following attachment of Neisseria gonorrhoeae to human epithelial cell lines, the cellular pilus receptor CD46 is shed from the cell and accumulates in the media. In this report, we assess Neisseria-induced alterations in CD46 surface distribution and characterize this complement regulatory protein following its release from the infected cell. Within 3 h of attachment of gonococci to human epithelial cell lines, CD46 is enriched beneath sites of microcolony adhesion. By 6 h post infection, differential ultracentrifugation of culture media from ME-180 monolayers resulted in sedimentation of structurally and functionally intact CD46. Electron microscopy of these 100,000 g pellets revealed 30-200 nm vesicles. These vesicles likely originated from the host cell as they contained additional host cell surface proteins including CD55 and the epidermal growth factor receptor. Further, these vesicles were visualized by quick-freeze, deep-etch electron microscopy in association with the surface of infected ME-180 cells and with pili of adherent gonococci. Like CD46 shedding, CD46 redistribution and vesicle release were insensitive to colchicine and cytochalasin-D but dependent on expression of the pilus retraction protein PilT. This vesiculation may represent a host cell defence response in which surface proteins that are commonly exploited by pathogens, such as CD46, are removed from the cell.  相似文献   

4.
Polymorphonuclear neutrophils (PMNs) are important components of the human innate immune system and are rapidly recruited at the site of bacterial infection. Despite the effective phagocytic activity of PMNs, Neisseria gonorrhoeae infections are characterized by high survival within PMNs. We reveal a novel type IV pilus-mediated adherence of pathogenic Neisseria to the uropod (the rear) of polarized PMNs. The direct pilus-uropod interaction was visualized by scanning electron microscopy and total internal reflection fluorescence (TIRF) microscopy. We showed that N. meningitidis adhesion to the PMN uropod depended on both pilus-associated proteins PilC1 and PilC2, while N. gonorrhoeae adhesion did not. Bacterial adhesion elicited accumulation of the complement regulator CD46, but not I-domain-containing integrins, beneath the adherent bacterial microcolony. Electrographs and live-cell imaging of PMNs suggested that bacterial adherence to the uropod is followed by internalization into PMNs via the uropod. We also present data showing that pathogenic Neisseria can hitchhike on PMNs to hide from their phagocytic activity as well as to facilitate the spread of the pathogen through the epithelial cell layer.  相似文献   

5.
6.
The Neisseria type IV pilus promotes bacterial adhesion to host cells. The pilus binds CD46, a complement-regulatory glycoprotein present on nucleated human cells (Källström et al., 1997). CD46 mutants with truncated cytoplasmic tails fail to support bacterial adhesion (Källström et al., 2001), suggesting that this region of the molecule also plays an important role in infection. Here, we report that infection of human epithelial cells by piliated Neisseria gonorrhoeae (GC) leads to rapid tyrosine phosphorylation of CD46. Studies with wild-type and mutant tail fusion constructs demonstrate that Src kinase phosphorylates tyrosine 354 in the Cyt2 isoform of the CD46 cytoplasmic tail. Consistent with these findings, infection studies show that PP2, a specific Src family kinase inhibitor, but not PP3, an inactive variant of this drug, reduces the ability of epithelial cells to support bacterial adhesion. Several lines of evidence point to the role of c-Yes, a member of the Src family of nonreceptor tyrosine kinases, in CD46 phosphorylation. GC infection causes c-Yes to aggregate in the host cell cortex beneath adherent bacteria, increases binding of c-Yes to CD46, and stimulates c-Yes kinase activity. Finally, c-Yes immunoprecipitated from epithelial cells is able to phosphorylate the wild-type Cyt2 tail but not the mutant derivative in which tyrosine 354 has been substituted with alanine. We conclude that GC infection leads to rapid tyrosine phosphorylation of the CD46 Cyt2 tail and that the Src kinase c-Yes is involved in this reaction. Together, the findings reported here and elsewhere strongly suggest that pilus binding to CD46 is not a simple static process. Rather, they support a model in which pilus interaction with CD46 promotes signaling cascades important for Neisseria infectivity.  相似文献   

7.
Human membrane cofactor protein (MCP, CD46) is a 45-70 kDa protein with genetic and tissue-specific heterogeneity, and is expressed on all nucleated cells. MCP consists from N-terminus of 4 short consensus repeats (SCRs), 1-3 serine/threonine-rich (ST) domains, a transmembrane domain (TM) and a cytoplasmic tail (CYT). More than 8 isoforms are generated secondary to alternative splicing due to combinations of various exons encoding the ST, TM and CYT domains. It serves as a cofactor of serine protease factor I for inactivation of complement C3b and C4b. Its primary role is to protect host cells from homologous complement attack by inactivating C3b/C4b deposited on the membrane. It also acts as receptors for measles virus (MV), some kinds of bacteria and for a putative ligand on oocytes. MV infection causes temporal host immune suppression, which may appear secondary to signaling events through MCP on macrophages and dendritic cells. These functional properties of human MCP may facilitate xenotransplantation and may be useful in the generation of animal models of measles by creating human MCP-expressing animals.  相似文献   

8.
Neisseria gonorrhoeae colony opacity-associated (Opa) proteins bind to human carcinoembryonic antigen cellular adhesion molecules (CEACAM) found on host cells including T lymphocytes. Opa binding to CEACAM1 suppresses the activation of CD4(+) T cells in response to a variety of stimuli. In this study, we use primary human CD4(+) T cells isolated from peripheral blood to define the molecular events occurring subsequent to Opa-CEACAM1 binding. We establish that, in contrast to other cell types, T cells do not engulf N. gonorrhoeae upon CEACAM1 binding. Instead, the bacteria recruit CEACAM1 from intracellular stores and maintain it on the T cell surface. Upon TCR ligation, the co-engaged CEACAM1 becomes phosphorylated on tyrosine residues within the ITIMs apparent in the cytoplasmic domain. This allows the recruitment and subsequent activation of the src homology domain 2-containing tyrosine phosphatases SHP-1 and SHP-2 at the site of bacterial attachment, which prevents the normal tyrosine phosphorylation of the CD3zeta-chain and ZAP-70 kinase in response to TCR engagement. Combined, this dynamic response allows the bacteria to effectively harness the coinhibitory function of CEACAM1 to suppress the adaptive immune response at its earliest step.  相似文献   

9.
CD46 is a transmembrane complement regulatory protein widely expressed on nucleated human cells. Laboratory-adapted strains of measles virus (MV) bind to the extracellular domains of CD46 to enter human cells. The cytoplasmic portion of CD46 consists of a common juxtamembrane region and different distal sequences called Cyt1 and Cyt2. The biological functions of these cytoplasmic sequences are unknown. In this study, we show that expression of human CD46 with the Cyt1 cytoplasmic domain in mouse macrophages enhances production of nitric oxide (NO) in response to MV infection in the presence of gamma interferon (IFN-gamma). Human CD46 does not increase the basal levels of NO production in mouse macrophages and does not augment NO production induced by double-stranded polyribonucleotides. Replacing the cytoplasmic domain of human CD46 with Cyt2 reduces MV and IFN-gamma-induced NO production in mouse macrophages. Deleting the entire cytoplasmic domains of human CD46 does not prevent MV infection but markedly attenuates NO production in response to MV and IFN-gamma. Mouse macrophages expressing a tailless human CD46 mutant are more susceptible to MV infection and produce 2 to 3 orders of magnitude more infectious virus than mouse macrophages expressing human CD46 with intact cytoplasmic domains. These results reveal a novel function of CD46 dependent on the cytoplasmic domains (especially Cyt1), which augments NO production in macrophages. These findings may have significant implications for roles of CD46 in innate immunity and MV pathogenesis.  相似文献   

10.
J P van Putten 《The EMBO journal》1993,12(11):4043-4051
Phase variation of Neisseria gonorrhoeae lipopolysaccharide (LPS) controls both bacterial entry into human mucosal cells, and bacterial susceptibility to killing by antibodies and complement. The basis for this function is a differential sialylation of the variable oligosaccharide moiety of the LPS. LPS variants that incorporate low amounts of sialic acid enter human mucosal epithelial cells very efficiently, but are susceptible to complement-mediated killing. Phase transition to a highly sialylated LPS phenotype results in equally adhesive but entry deficient bacteria which, however, resist killing by antibodies and complement because of dysfunctional complement activation. Phase variation of N. gonorrhoeae LPS thus functions as an adaptive mechanism enabling bacterial translocation across the mucosal barrier, and, at a later stage of infection, escape from the host immune defence.  相似文献   

11.
Type IV pili of Neisseria gonorrhoeae and Neisseria meningitidis mediate the first contact to human mucosal epithelial cells, an interaction which is also critical for the interaction with vascular endothelial cells. The PilC proteins have been characterized as the principal pilus-associated adhesin. Here we show that PilC2 exhibits a defined cell and tissue tropism, as it binds to human epithelial and endothelial cell lines, but not to human T cells or fibroblasts. Piliated gonococci and PilC2 exhibit similar patterns of binding to human epithelial and endothelial cells, supporting the function of PilC as the key pilus adhesin. Although CD46 has previously been suggested to be a pilus receptor, several observations indicate that neisserial type IV pili and the pilus adhesin PilC2 interact with epithelial cells in a CD46 independent manner. Biochemical approaches were used to characterize the nature of host cell factors mediating binding of piliated gonococci and PilC2 protein. Our data indicate that the putative host cell receptor for gonococcal pili and the PilC2 pilus adhesin is a surface protein. Glycostructures were found to not be involved in binding. Moreover, we observed the uptake of purified PilC2 protein together with its receptor via receptor-mediated endocytosis and subsequent receptor re-exposure on the cell surface. Our data support the existence of a specific pilus receptor and provide intriguing information on the nature of the receptor.  相似文献   

12.
A cDNA encoding a membrane-associated complement (C) regulatory protein was identified here for the first time in an oviparous vertebrate, chicken. This protein, named Cremp, possessed five short consensus repeats (SCRs) and one SCR-like domain followed by a transmembrane domain and a cytoplasmic tail. SCR1/SCR2 of Cremp were 43.6% identical with SCR2/SCR3 of human decay-accelerating factor (CD55), and SCR3/SCR4 were 45.3% identical with those of human membrane cofactor protein (CD46). Cremp is likely to be an ancestral hybrid protein of human decay-accelerating factor and membrane cofactor protein rather than a homolog of rodent C receptor 1-related protein y, which structurally resembles human CR1 (CD35). Chinese hamster ovary cells transfected with Cremp were efficiently protected from chicken C but not from human or rabbit C in both classical and alternative pathways. Thus, chicken Cremp is a membrane C regulator for cell protection against homologous C. Cremp mRNA was seen as a doublet comprised of a faint band of 2.2 kb and a thick band of 3.0 kb on RNA blotting analysis. An Ab against chicken Cremp recognized a single band of 46.8 kDa on immunoblotting. mRNA and protein of Cremp were ubiquitously expressed in all chicken organs tested. Minute amounts of dimer were present in some tissues. Surface expression of Cremp was confirmed by flow cytometry and immunofluorescence analysis. These results suggested that even in nonmammals a C regulatory membrane protein with ubiquitous tissue distribution should be a prerequisite for protection of host cells from homologous C attack.  相似文献   

13.
CD44-negative COS-7 cells were transfected with expression constructs for CD44H (the predominant CD44 isoform), CD44E (epithelial isoform), or truncation mutant derivatives lacking the carboxyl-terminal 67 amino acids of the cytoplasmic domain, CD44HDelta67 and CD44EDelta67. The truncation mutant CD44HDelta67 is identical to a naturally occurring alternatively spliced "short tail" CD44 isoform (CD44st), which incorporates exon 19 in place of exon 20. CD44st lacks intracellular signaling motifs as well as protein domains necessary for interaction with cytoskeletal components. Transfection of COS-7 cells with each construct yielded equivalent levels of mRNA expression, whereas no CD44 expression was observed in parental, nontransfected COS-7 cells. Western analysis and immunostaining of COS-7 transfectants confirmed CD44 protein expression of the truncation mutant derivatives. COS-7 cells transfected with CD44H or CD44E gained the capacity to bind fluorescein-conjugated HA (fl-HA) and assemble HA-dependent pericellular matrices in the presence of exogenously added HA and proteoglycan. In addition, the CD44H- and CD44E-transfected cells were able to internalize surface-bound fl-HA. COS-7 cells transfected with the vector alone or with either of the mutant CD44 isoforms, CD44HDelta67 or CD44EDelta67, did not exhibit the capacity to assemble pericellular matrices or to bind and internalize the fl-HA. Cotransfection of CD44Delta67 mutants together with CD44H reduced the size of the HA-dependent pericellular matrices. Transfection of bovine articular chondrocytes with CD44Delta67 also inhibited pericellular matrix assembly. Collectively, these results indicate an obligatory requirement for the CD44 receptor cytoplasmic domain for ligand (HA) binding, formation and retention of the pericellular matrix, as well as CD44-mediated endocytosis of HA. In addition, the results suggest a potential regulatory role for the differentially expressed alternatively spliced short tail CD44 isoform.  相似文献   

14.
The interaction of the OpaA protein of Neisseria gonorrhoeae MS11mk with heparan sulphate-containing proteoglycan receptors on Chang conjunctiva epithelial cells was examined using isolated receptor binding and cell adherence/internalization assays. OpaA deletion proteins, in which the four surface-exposed regions of the protein were deleted individually, and chimeric OpaA/B proteins, in which the surface-exposed regions of the OpaA and OpaB proteins were exchanged, were expressed in N. gonorrhoeae. The recombinant deletion proteins and the chimeric OpaA/B proteins were surface exposed in the outer membrane of N. gonorrhoeae. Isolated receptor-binding assays and Chang cell infection assays with OpaA deletion variants indicated that hypervariable region 1 was essential for the interaction of N. gonorrhoeae with the proteoglycan receptor. Expression of chimeric OpaA/B proteins confirmed the central role of hypervariable region 1 in receptor binding and demonstrated that this domain alone confers the invasive biological phenotype in a non-heparan sulphate proteoglycan-binding Opa protein. The other variable regions of OpaA enhanced receptor binding in the presence of region 1, but did not constitute binding domains on their own. The results indicate that proteoglycan receptor binding results from a hierarchical interaction between the variable domains of the OpaA protein of MS11mk.  相似文献   

15.
Cellular disintegrins are a family of proteins that are related to snake venom integrin ligands and metalloproteases. We have cloned and sequenced the mouse and human homologue of a widely expressed cellular disintegrin, which we have termed MDC9 (for metalloprotease/disintegrin/cysteine-rich protein 9). The deduced mouse and human protein sequences are 82% identical. MDC9 contains several distinct protein domains: a signal sequence is followed by a prodomain and a domain with sequence similarity to snake venom metalloproteases, a disintegrin domain, a cysteine-rich region, an EGF repeat, a membrane anchor, and a cytoplasmic tail. The cytoplasmic tail of MDC9 has two proline-rich sequences which can bind the SH3 domain of Src, and may therefore function as SH3 ligand domains. Western blot analysis shows that MDC9 is an approximately 84-kD glycoprotein in all mouse tissues examined, and in NIH 3T3 fibroblast and C2C12 myoblast mouse cell lines. MDC9 can be both cell surface biotinylated and 125I-labeled in NIH 3T3 mouse fibroblasts, indicating that the protein is present on the plasma membrane. Expression of MDC9 in COS-7 cells yields an 84-kD protein, and immunofluorescence analysis of COS-7 cells expressing MDC9 shows a staining pattern that is consistent with a plasma membrane localization. The apparent molecular mass of 84 kD suggests that MDC9 contains a membrane-anchored metalloprotease and disintegrin domain. We propose that MDC9 might function as a membrane-anchored integrin ligand or metalloprotease, or that MDC9 may combine both activities in one protein.  相似文献   

16.
Monkey cells persistently infected by measles virus (MV) Biken strain (Biken-CV-1 cells) showed no cytopathic effects and lacked surface expression of a homolog of human cell receptor, membrane cofactor protein CD46. Transfection of a human CD46 gene into these cells induced extensive cell fusion, indicating that down regulation of the endogenous CD46 homolog was essential for the maintenance of a noncytopathic mode of infection. Surface expression of the exogenously introduced human CD46 was also drastically down regulated in the persistently infected cells compared with uninfected cells. The down regulation was specific for CD46 and did not affect surface expression of exogenously introduced CD4. Exogenous human CD46 was synthesized efficiently in the persistently infected cells, but it did not accumulate on the cell surface. Fusion of Biken-CV-1 cells required the extracellular hemagglutinin (H-protein)-binding domain but not the cytoplasmic domain. Replacing the transmembrane and cytoplasmic domains of CD46 with a glycosylphosphatidylinositol anchor did not prevent cell fusion but completely alleviated down regulation of the glycosylphosphatidylinositol-anchored CD46 in Biken-CV-1 cells. Deletion analyses revealed that the membrane-distal sequences of the CD46 cytoplasmic domain were not only unnecessary but also inhibitory for CD46 down regulation. By contrast, the six amino acid residues proximal to the membrane contained a sequence required for CD46 down regulation in the persistently infected cells. These results indicate that CD46 is down regulated in the persistently infected cells by a mechanism that recognizes a membrane-proximal sequence in the CD46 cytoplasmic domain.  相似文献   

17.
P-selectin (CD62), formerly called GMP-140 or PADGEM, is a membrane protein located in secretory storage granules of platelets and endothelial cells. To study the mechanisms responsible for the targeting of P-selectin to storage granules, we transfected its cDNA into COS-7 and CHO-K1 cells, which lack a regulated exocytic pathway, or into AtT20 cells, which are capable of regulated secretion. P-selectin was expressed on the plasma membrane of COS-7 and CHO-K1 cells but was concentrated in storage granules of AtT20 cells. Immunogold electron microscopy indicated that the electron-dense granules containing P-selectin in AtT20 cells also stored the endogenous soluble hormone ACTH. Activation of AtT20 cells with 8-Br-cAMP increased the surface expression of P-selectin, consistent with agonist-induced fusion of granule membranes with the plasma membrane. Deletion of the last 23 amino acids of the 35-residue cytoplasmic domain resulted in delivery of P-selectin to the plasma membrane of AtT20 cells. Replacement of the cytoplasmic tail of tissue factor, a plasma membrane protein, with the cytoplasmic domain of P-selectin redirected the chimeric molecule to granules. We conclude that the cytoplasmic domain of P-selectin is both necessary and sufficient for sorting of membrane proteins into the regulated pathway of secretion.  相似文献   

18.
Neisseria gonorrhoeae is the second most common sexually transmitted bacterial pathogen worldwide. Diseases associated with N. gonorrhoeae cause localized inflammation of the urethra and cervix. Despite this inflammatory response, infected individuals do not develop protective adaptive immune responses to N. gonorrhoeae. N. gonorrhoeae is a highly adapted pathogen that has acquired multiple mechanisms to evade its host's immune system, including the ability to manipulate multiple immune signaling pathways. N. gonorrhoeae has previously been shown to engage immunosuppressive signaling pathways in B and T lymphocytes. We have now found that N. gonorrhoeae also suppresses adaptive immune responses through effects on antigen presenting cells. Using primary, murine bone marrow-derived dendritic cells and lymphocytes, we show that N. gonorrhoeae-exposed dendritic cells fail to elicit antigen-induced CD4+ T lymphocyte proliferation. N. gonorrhoeae exposure leads to upregulation of a number of secreted and dendritic cell surface proteins with immunosuppressive properties, particularly Interleukin 10 (IL-10) and Programmed Death Ligand 1 (PD-L1). We also show that N. gonorrhoeae is able to inhibit dendritic cell- induced proliferation of human T-cells and that human dendritic cells upregulate similar immunosuppressive molecules. Our data suggest that, in addition to being able to directly influence host lymphocytes, N. gonorrhoeae also suppresses development of adaptive immune responses through interactions with host antigen presenting cells. These findings suggest that gonococcal factors involved in host immune suppression may be useful targets in developing vaccines that induce protective adaptive immune responses to this pathogen.  相似文献   

19.
Membrane-anchored complement regulatory proteins (CRPs), including CD46, CD55, and CD59, protect host cells from complement attack. In the present study, we investigated whether periodontopathogen lipopolysaccharide and proinflammatory cytokines modulate CRP gene/protein expression in human oral epithelial cells. The lipopolysaccharide of Treponema denticola and Tannerella forsythia were the most potent for increasing the gene expression of CD55 and CD59, and to a lesser extent CD46, after a 48-h stimulation. An lipopolysaccharide-induced upregulation of epithelial cell-surface CRP was also demonstrated. The stimulation of epithelial cells with lipopolysaccharide was associated with interleukin-6 (IL-6) and IL-8 secretion. Although these two cytokines had no effect on CD46 and CD55 gene expression in epithelial cells, IL-1β and tumor necrosis factor-α induced a significant upregulation. The cell-surface expression of CRP was also increased by the stimulation of epithelial cells with cytokines. The CD46, CD55, and CD59 gene/protein expression was upregulated by periodontopathogen lipopolysaccharide and proinflammatory cytokines. It can be hypothesized that, when faced with bacterial challenges and inflammatory conditions associated with active periodontal sites, oral epithelial cells may respond by increasing CRP gene/protein expression to avoid cell lysis by the complement system, which is activated during periodontitis.  相似文献   

20.
Endothelial leukocyte adhesion molecule-1 (ELAM-1) is a cytokine-inducible endothelial cell surface glycoprotein involved in the adherence of neutrophils. ELAM-1 belongs to the selectin family of cell-surface molecules characterized by the general structure of an amino-terminal lectin domain followed by an epidermal growth factor domain, a variable number of complement regulatory elements, a single transmembrane sequence, and a short cytoplasmic tail. To study the in vivo regulation and expression of ELAM-1, we have isolated a complementary DNA (cDNA) clone encoding the rabbit homolog of human ELAM-1. The nucleotide sequence of the rabbit cDNA as well as its deduced amino acid sequence display extensive conservation compared to the human sequences. Rabbit ELAM-1 contains the characteristic protein domain organization of the selectin gene family and shares 74% amino acid identity with its human counterpart. However, rabbit ELAM-1 contains five complement regulatory elements whereas the human protein has six of these elements. Characterization of the genomic sequence encoding rabbit ELAM-1 indicated that individual extracellular protein domains are encoded by distinct exons. The genomic organization of rabbit ELAM-1 parallels that found for the human ELAM-1 gene and is similar to the pattern observed for other selectin family members (GMP-140, Lam-1), consistent with the hypothesis that the selectins evolved by duplication and rearrangement of individual exons. COS cells transiently expressing the rabbit ELAM-1 cDNA mediate the adhesion of rabbit and human polymorphonuclear leukocytes and are recognized by antibodies prepared against the human protein. Our results suggest that the specificity of molecular interaction between ELAM-1 and its ligand is highly conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号