首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty cultivars of barley and 15 eceriferum mutants from one of the cultivars have been analysed for cuticular transpiration and epicuticular lipids of their primary leaves. The relative cuticular transpiration rates of the cultivars ranged from 0.61 to 1.98. In spite of this variation in transpiration most of the cultivars had almost the same amount of epicuticular lipids per leaf area, about 16 μg cm−2. The eceriferum mutants showed a wider range in amount of epicuticular lipids, from 5.0 to 15.5 μg cm−2. Nevertheless, most of the mutants transpired almost at the same rate. Only a weak correlation was found between cuticular transpiration and total amount of epicuticular lipids. None of the analysed lipid components (alkanes, aldehydes, primary alcohols, esters or fatty acids) was better correlated to the cuticular transpiration than the total amount of lipids. When the cultivars were exposed to a mild water stress their cuticular transpiration rates decreased by about 11%. This reduction was not accompanied by any corresponding increase in total amount of epicuticular lipids. The most pronounced effect of the water stress treatment was a stimulation in the ester formation and a reduced formation of primary alcohols. This shift in lipid composition could not be correlated to the decreased cuticular transpiration rates of the individual cultivars. From this investigation it is concluded that the cuticular transpiration is poorly correlated to the amount or composition of the epicuticular lipids in this barley material. As a consequence it was not possible to use any characteristic of the epicuticular lipids as a selection criterion in breeding for drought resistance.  相似文献   

2.
Two cultivars of oat ( Avena sativa L. cvs Pendek and Stormogul II) were exposed to short periods of water-deficit stress on five consecutive days. The plants responded to the stress by decreasing their cuticular transpiration rate. After two stress periods the cuticular transpiration rate was reduced by 30% for Pendek and by 47% for Stormogul II, and after another three stress periods by 30% and 20%, respectively. These reductions were correlated neither to changes in the total amount of what is generally called epicuticular lipids, nor to changes in any of the major individual constituents of the epicuticular lipids (alkanes, free and esterified fatty acids or free primary alcohols). After removal of the epicuticular lipids the long chain free primary alcohols of the leaves were extracted and determined. The amount of these presumably intracuticular alcohols increased after stress and changed to shorter chain length. From these results it is concluded that the intra- as well as the epicuticular lipids must be taken into consideration when discussing leaf surface lipids as protecting agents against water loss.  相似文献   

3.
Cuticular waxes play a pivotal role in limiting transpirational water loss across the plant surface. The correlation between the chemical composition of the cuticular waxes and their function as a transpiration barrier is still unclear. In the present study, intact tomato fruits (Lycopersicon esculentum) are used, due to their astomatous surface, as a novel integrative approach to investigate this composition- function relationship: wax amounts and compositions of tomato were manipulated before measuring unbiased cuticular transpiration. First, successive mechanical and extractive wax-removal steps allowed the selective modification of epi- and intracuticular wax layers. The epicuticular film consisted exclusively of very-long-chain aliphatics, while the intracuticular compartment contained large quantities of pentacyclic triterpenoids as well. Second, applying reverse genetic techniques, a loss-of-function mutation with a transposon insertion in a very-long-chain fatty acid elongase beta-ketoacyl-CoA synthase was isolated and characterized. Mutant leaf and fruit waxes were deficient in n-alkanes and aldehydes with chain lengths beyond C30, while shorter chains and branched hydrocarbons were not affected. The mutant fruit wax also showed a significant increase in intracuticular triterpenoids. Removal of the epicuticular wax layer, accounting for one-third of the total wax coverage on wild-type fruits, had only moderate effects on transpiration. By contrast, reduction of the intracuticular aliphatics in the mutant to approximately 50% caused a 4-fold increase in permeability. Hence, the main portion of the transpiration barrier is located in the intracuticular wax layer, largely determined by the aliphatic constituents, but modified by the presence of triterpenoids, whereas epicuticular aliphatics play a minor role.  相似文献   

4.
Wen M  Buschhaus C  Jetter R 《Phytochemistry》2006,67(16):1808-1817
Needles of Taxus baccata L. were covered with tubular epicuticular wax crystals varying in diameters (100 and 250 nm) and lengths (300-500 and 500-1000 nm) on the abaxial and adaxial surfaces, respectively. Various sampling protocols were employed to study the chemical composition of the needle waxes on three different levels of spatial resolution. First, a dipping extraction of whole needles yielded the total cuticular wax mixture consisting of very long chain fatty acids (21%), alkanediols (19%), phenyl esters (15%), and secondary alcohols (9%) together with small amounts of aldehydes, primary alcohols, alkanes, alkyl esters, and tocopherols. Second, waxes from both sides of the needle were sampled separately by brushing with CHCl3-soaked fabric glass. Both sides showed very similar qualitative composition, but differed drastically in quantitative aspects, with nonacosan-10-ol (18%) and alkanediols (33%) dominating the abaxial and adaxial waxes, respectively. Third, the epi- and intracuticular wax layers were selectively sampled by a combination of mechanical wax removal and brushing extraction. This provided direct evidence that the tubular wax crystals contained high percentages of nonacosane-4,10-diol and nonacosane-5,10-diol on the abaxial surface, and nonacosan-10-ol on the adaxial surface of the needles. Together with these compounds, relatively large amounts of fatty acids and smaller percentages of aldehydes, primary alcohols, alkyl esters, and alkanes co-crystallized in the epicuticular layer. In comparison, the intracuticular wax consisted of higher portions of cyclic constituents and aliphatics with relatively high polarity. The formation of the tubular crystals is discussed as a spontaneous physico-chemical process, involving the establishment of gradients between the epi- and intracuticular wax layers and local phase separation.  相似文献   

5.
The composition and spatial arrangement of cuticular waxes on the leaves of Prunus laurocerasus were investigated. In the wax mixture, the triterpenoids ursolic acid and oleanolic acid as well as alkanes, fatty acids, aldehydes, primary alcohols and alcohol acetates were identified. The surface extraction of upper and lower leaf surfaces yielded 280 mg m ? 2 and 830 mg m ? 2, respectively. Protocols for the mechanical removal of waxes from the outermost layers of the cuticle were devised and evaluated. With the most selective of these methods, 130 mg m ? 2 of cuticular waxes could be removed from the adaxial surface before a sharp, physically resistant boundary was reached. Compounds thus obtained are interpreted as ‘epicuticular waxes’ with respect to their localization in a distinct layer on the surface of the cutin matrix. The epicuticular wax film can be transferred onto glass and visualized by scanning electron microscopy. Prunus laurocerasus epicuticular waxes consisted entirely of aliphatic compounds, whereas the remaining intracuticular waxes comprised 63% of triterpenoids. The ecological relevance of this layered structure for recognition by phytotrophic fungi and herbivorous insects that probe the surface composition for sign stimuli is discussed.  相似文献   

6.
Buschhaus C  Herz H  Jetter R 《Annals of botany》2007,100(7):1557-1564
BACKGROUND AND AIMS: The waxy cuticle is the first point of contact for many herbivorous and pathogenic organisms on rose plants. Previous studies have reported the average composition of the combined wax extract from both sides of rose leaves. Recently, the compositions of the waxes on the adaxial and abaxial surfaces of Rosa canina leaves were determined separately. In this paper, a first report is made on the compositions of the epicuticular and intracuticular wax layers of Rosa canina leaves. The methods described enable the determination of which compounds are truly available at the surface for plant-organism interactions. METHODS: An adhesive was used to mechanically strip the epicuticular wax from the adaxial leaf surface and the removal was visually confirmed using scanning electron microscopy. After the epicuticular wax had been removed, the intracuticular wax was then isolated using standard chemical extraction. Gas chromatography, flame ionization detection and mass spectrometry were used to identify and quantify compounds in the separated wax mixtures. KEY RESULTS: The epicuticular wax contained higher concentrations of alkanes and alkyl esters but lower concentrations of primary alcohols and alkenols when compared to the intracuticular wax. In addition, the average chain lengths of these compound classes were higher in the epicuticular wax. Secondary alcohols were found only in the epicuticular layer while triterpenoids were restricted mainly to the intracuticular wax. CONCLUSIONS: A gradient exists between the composition of the epi- and intracuticular wax layers of Rosa canina leaves. This gradient may result from polarity differences, in part caused by differences in chain lengths. The outer wax layer accessible to the phyllosphere showed a unique composition of wax compounds. The ecological consequences from such a gradient may now be probed.  相似文献   

7.
Six varieties of oat (Avena sativa L. cv. Stormogul II, Risto, Sol II, Selma, Sang and Pendek, arranged according to decreasing drought resistance) were cultivated under controlled conditions and exposed to water stress on 4 consecutive days. Seven-day-old seedlings were stressed by cooling the roots for 3 h to 1.0°C. During this treatment the leaf water potential decreased from -7 to -12 bars. Cuticular transpiration rate, total amount of epicuticular wax and amounts of some wax components (primary alcohols, alkanes, fatty acids) were determined. Unstressed seedlings of the most drought resistant variety (Stormogul II) showed the highest cuticular transpiration rate. After stress treatment the cuticular transpiration rate was most strongly reduced in this variety and at the same time it showed the largest increase in amount of epicuticular wax of the tested varieties. In Pendek and Sang, showing the least increase in epicuticular wax, the cuticular transpiration rate was only 5% lower after stress treatment. In all varieties the primary alcohol content of the epicuticular wax was slightly higher in stressed seedlings than in controls. Further, in Stormogul and Risto the content of the predominant alkanes was much lower in stressed seedlings than in controls. On the contrary, in Pendek the stressed seedlings showed a higher alkane content. In Stormogul II, Risto and Sol II the total amount of fatty acids was higher in stressed seedlings than in controls while the opposite was true in Sang. The relation between the epicuticular wax (amount and composition) and the cuticular transpiration rate is discussed as well as the possibility of using the tested parameters in a screening test for drought resistance.  相似文献   

8.
Plant cuticular waxes play a crucial role in limiting nonstomatal water loss. The goal of this study was to localize the transpiration barrier within the layered structure of cuticles of eight selected plant species and to put its physiological function into context with the chemical composition of the intracuticular and epicuticular wax layers. Four plant species (Tetrastigma voinierianum, Oreopanax guatemalensis, Monstera deliciosa, and Schefflera elegantissima) contained only very-long-chain fatty acid (VLCFA) derivatives such as alcohols, alkyl esters, aldehydes, and alkanes in their waxes. Even though the epicuticular and intracuticular waxes of these species had very similar compositions, only the intracuticular wax was important for the transpiration barrier. In contrast, four other species (Citrus aurantium, Euonymus japonica, Clusia flava, and Garcinia spicata) had waxes containing VLCFA derivatives, together with high percentages of alicyclic compounds (triterpenoids, steroids, or tocopherols) largely restricted to the intracuticular wax layer. In these species, both the epicuticular and intracuticular waxes contributed equally to the cuticular transpiration barrier. We conclude that the cuticular transpiration barrier is primarily formed by the intracuticular wax but that the epicuticular wax layer may also contribute to it, depending on species-specific cuticle composition. The barrier is associated mainly with VLCFA derivatives and less (if at all) with alicyclic wax constituents. The sealing properties of the epicuticular and intracuticular layers were not correlated with other characteristics, such as the absolute wax amounts and thicknesses of these layers.The plant cuticle is one of the major adaptations of vascular plants for life in the atmospheric environment. Accordingly, the primary function of cuticles is to limit nonstomatal water loss and, thus, to protect plants against drought stress (Burghardt and Riederer, 2006). However, plant cuticles also play roles in minimizing the adhesion of dust, pollen, and spores (Barthlott and Neinhuis, 1997), protecting tissues from UV radiation (Krauss et al., 1997; Solovchenko and Merzlyak, 2003), mediating biotic interactions with microbes (Carver and Gurr, 2006; Leveau, 2006; Hansjakob et al., 2010, 2011; Reisberg et al., 2012) as well as insects (Eigenbrode and Espelie, 1995; Müller and Riederer, 2005), and preventing deleterious fusions between different plant organs (Tanaka and Machida, 2013).Cuticles are composite (nonbilayer) membranes consisting of an insoluble polymer matrix and solvent-soluble waxes. The polymer matrix (MX) is mainly made of the hydroxy fatty acid polyester cutin (Nawrath, 2006) and also contains polysaccharides and proteins (Heredia, 2003). In contrast, cuticular waxes are complex mixtures of aliphatic compounds derived from very-long-chain fatty acids (VLCFAs) with hydrocarbon chains of C20 and more (Jetter et al., 2007). Wax quantities and compositions vary greatly between plant species and, in many cases, even between organs and developmental stages. Diverse VLCFA derivatives can be present, including free fatty acids, aldehydes, ketones, primary and secondary alcohols, alkanes, and alkyl esters. Besides, the cuticular waxes of many plant species also contain cyclic compounds such as triterpenoids and aromatics.In order to characterize the physiological function of cuticular waxes, methods have been developed for the isolation of astomatous cuticles and the measurement of transpiration rates under exactly controlled conditions, so that well-defined physical transport parameters such as permeances and resistances can be determined and compared across species and organs (Schönherr and Lendzian, 1981; Kerstiens, 1996; Riederer and Schreiber, 2001; Lendzian, 2006). With these methods, it was demonstrated that the cuticular water permeance increases by up to 3 orders of magnitude upon wax removal, thus showing the central role of waxes as a transpiration barrier (Schönherr, 1976). Permeances for water determined so far with astomatous isolated leaf cuticular membranes (CMs) or in situ leaf cuticles range over 2.5 orders of magnitude, from 3.63 × 10−7 m s−1 (Vanilla planifolia) to 7.7 × 10−5 m s−1 (Maianthemum bifolium; Riederer and Schreiber, 2001).The species-dependent differences of both wax composition and permeance led to a search for correlations between cuticle structure and function. If such a structure-function relationship could be established, then it would become possible to select or alter wax composition in order to improve cuticle performance in crop species (Kosma and Jenks, 2007). However, all attempts to understand cuticle permeance based on cuticle composition have failed so far: correlations between wax amounts and permeances could not be established, contrary to the common assumption that thicker wax layers must provide better protection against desiccation (Schreiber and Riederer, 1996; Riederer and Schreiber, 2001). Similarly, a correlation between wax quality (i.e. the relative portions of its constituents) and permeance could also not be established to date (Burghardt and Riederer, 2006). It is not clear how certain wax components contribute to the vital barrier function of the cuticle.Previous attempts to establish wax structure-function relationships may have failed because only bulk wax properties were studied and important effects of substructures were averaged out. However, distinct compartments of wax exist within the cuticle, most prominently as a layer of intracuticular wax embedded within the MX and a layer of epicuticular wax deposited on the outer surface of the polymer (Jeffree, 2006). Over the last years, methods have been developed that allow the selective removal of epicuticular wax by adhesive surface stripping, followed by equally selective extraction of intracuticular wax (Jetter et al., 2000; Jetter and Schäffer, 2001). Chemical analyses showed that, for most plant species investigated to date, both wax layers have distinct compositions (Buschhaus and Jetter, 2011). The most pronounced differences between the layers were found for the triterpenoids, which were localized predominantly (or even exclusively) in the intracuticular wax. These findings raised the possibility that the chemically distinct wax layers might also have distinct functions, leading back to the long-standing question of whether the water barrier function is exerted by the intracuticular and/or the epicuticular wax. There are only scant data to answer this question so far, mainly because methods allowing a distinction between epicuticular and intracuticular waxes were established only recently. Using these sampling techniques, it was recently found that, for leaves of Prunus laurocerasus, the epicuticular wax layer does not contribute to the transpiration barrier (Zeisler and Schreiber, 2016). In contrast, it had been reported that removal of the epicuticular wax layer from tomato (Solanum lycopersicum) fruit caused an approximately 2-fold increase in transpiration, suggesting that, in this species, the epicuticular layer constitutes an important part of the barrier (Vogg et al., 2004). Based on these conflicting reports, it is not clear to what extent the intracuticular or the epicuticular waxes contribute to the sealing function of the plant skin.The goal of this study was to localize the transpiration barrier within the cuticular membrane of selected plant species and to put the physiological function into context with the chemical composition of both the epicuticular and intracuticular wax layers. To this end, we selected eight species from which leaf cuticles could be isolated and methods for step-wise wax removal could be applied without damaging the cuticle. Preliminary studies had shown that the adaxial cuticles on leaves of Citrus aurantium (Rutaceae), Euonymus japonica (Celastraceae), Clusia flava (Clusiaceae), Garcinia spicata (Clusiaceae), Tetrastigma voinierianum (Vitaceae), Oreopanax guatemalensis (Araliaceae), Monstera deliciosa (Araceae), and Schefflera elegantissima (Araliaceae) were astomateous and showed wide chemical diversity. Therefore, these eight species were selected to address the following questions: (1) What are the amounts of epicuticular and intracuticular waxes? (2) Do compositional differences exist between the layers? (3) Where are the cuticular triterpenoids located? (4) How much do the epicuticular and intracuticular waxes contribute to the transpiration barrier? (5) Is the barrier associated with certain components of the intracuticular or epicuticular waxes?  相似文献   

9.
Ji X  Jetter R 《Phytochemistry》2008,69(5):1197-1207
Alkylresorcinols (ARs) are bioactive compounds occurring in many members of the Poaceae, likely at or near the surface of various organs. Here, we investigated AR localization within the cuticular wax layers of rye (Secale cereale) leaves. The total wax mixture from both sides of the leaves was found to contain primary alcohols (71%), alkyl esters (11%), aldehydes (5%), and small amounts (<3%) of alkanes, steroids, secondary alcohols, fatty acids and unknowns. A homologous series of ARs (3%) was identified by GC-MS and comparison with a synthetic standard of nonadecylresorcinol. The alkyl side chains of the wax ARs contained odd numbers of carbons ranging from C19 to C27, with a prevalence of C21, C23 and C25. Waxes from both sides of the leaf, analyzed separately in a second experiment, comprised the same compound classes in similar relative amounts and with similar homolog patterns. Finally, the epicuticular and intracuticular wax layers were sampled separately from the abaxial side of the leaf. While ARs accounted for 2% of the intracuticular wax, they were not detectable in the epicuticular wax. The intracuticular wax was also slightly enriched in steroids, whereas the epicuticular layer contained more primary alcohols. All other wax constituents were distributed evenly between both wax layers.  相似文献   

10.
The scale, mechanism, and physiological importance of cuticular transpiration were last reviewed in this journal 5 and 10 years ago. Progress in our basic understanding of the underlying processes and their physiological and structural determinants has remained frustratingly slow ever since. There have been major advances in the quantification of cuticular water permeability of stomata-bearing leaf and fruit surfaces and its dependence on leaf temperature in astomatous surfaces, as well as in our understanding of the respective roles of epicuticular and intracuticular waxes and molecular-scale aqueous pores in its physical control. However, understanding the properties that determine the thousand-fold differences between permeabilities of different cuticles remains a huge challenge. Molecular biology offers unique opportunities to elucidate the relationships between cuticular permeability and structure and chemical composition of cuticles, provided care is taken to quantify the effects of genetic manipulation on cuticular permeability by reliable experimental approaches.  相似文献   

11.
Jetter R  Schäffer S 《Plant physiology》2001,126(4):1725-1737
The seasonal development of adaxial Prunus laurocerasus leaf surfaces was studied using newly developed methods for the mechanical removal of epicuticular waxes. During epidermal cell expansion, more than 50 microg leaf(-1) of alkyl acetates accumulated within 10 d, forming an epicuticular wax film approximately 30 nm thick. Then, alcohols dominated for 18 d of leaf development, before alkanes accumulated in an epicuticular wax film with steadily increasing thickness (approximately 60 nm after 60 d), accompanied by small amounts of fatty acids, aldehydes, and alkyl esters. In contrast, the intracuticular waxes stayed fairly constant during development, being dominated by triterpenoids that could not be detected in the epicuticular waxes. The accumulation rates of all cuticular components are indicative for spontaneous segregation of intra- and epicuticular fractions during diffusional transport within the cuticle. This is the first report quantifying the loss of individual compound classes (acetates and alcohols) from the epicuticular wax mixture. Experiments with isolated epicuticular films showed that neither chemical conversion within the epicuticular film nor erosion/evaporation of wax constituents could account for this effect. Instead, transport of epicuticular compounds back into the tissue seems likely. Possible ecological and physiological functions of the coordinate changes in the composition of the plant surface layers are discussed.  相似文献   

12.
Conservation of water is critical to the ecological success of Drosophila species living in the drier montane localities of the Western Himalayas. We observed clinal variation in desiccation resistance for both sexes of Drosophila kikkawai from an altitudinal transect (512–2226 m above sea level). Since more than 90 per cent of body water is lost through cuticular transpiration, the target of selection may be cuticular lipids or cuticular melanization. We tested whether melanic females and non-melanic males of D. kikkawai have similar mechanisms of desiccation resistance. There is clinal variation in the amount of cuticular lipids per fly in males, but not in females. By contrast, for females, elevational increase in melanization is positively correlated with desiccation resistance and negatively with cuticular water loss, but there is no variation in the amount of cuticular lipids. Thus, sexual dimorphism for the mechanism of desiccation resistance in D. kikkawai matches the water proofing role of body melanization as well as cuticular lipids.  相似文献   

13.
The protective wax coating on plant surfaces has long been considered to be non-uniform in composition at a subcellular scale. In recent years, direct evidence has started to accumulate showing quantitative compositional differences between the epicuticular wax (i.e. wax exterior to cutin that can be mechanically peeled off) and intracuticular wax (i.e. wax residing within the mechanically resistant layer of cutin) layers in particular. This review provides a first synthesis of the results acquired for all the species investigated to date in order to assign chemical information directly to cuticle substructures, together with an overview of the methods used and a discussion of possible mechanisms and biological functions. The development of methods to probe the wax for z-direction heterogeneity began with differential solvent extractions. Further research employing mechanical wax removal by adhesives permitted the separation and analysis of the epicuticular and intracuticular wax. In wild-type plants, the intracuticular (1-30 μg cm(-2)) plus the epicuticular wax (5-30 μg cm(-2)) combined to a total of 8-40 μg cm(-2). Cyclic wax constituents, such as triterpenoids and alkylresorcinols, preferentially or entirely accumulate within the intracuticular layer. Within the very-long-chain aliphatic wax components, primary alcohols tend to accumulate to higher percentages in the intracuticular wax layer, while free fatty acids and alkanes in many cases accumulate in the epicuticular layer. Compounds with different chain lengths are typically distributed evenly between the layers. The mechanism causing the fractionation remains to be elucidated but it seems plausible that it involves, at least in part, spontaneous partitioning due to the physico-chemical properties of the wax compounds and interactions with the intracuticular polymers. The arrangement of compounds probably directly influences cuticular functions.  相似文献   

14.
Water conservation is a significant physiological problem for many insects, particularly as temperature increases. Early experimental work supported the concept of a transition temperature, above which water-loss rates increase rapidly as temperature increases. The transition phenomenon was hypothesized to result from melting of epicuticular lipids, the main barrier to cuticular transpiration. This explanation has been challenged on theoretical grounds, leading to thermodynamic analyses of cuticular transpiration based on reaction rate theory. These studies have not directly addressed the mechanistic basis of the transition temperature. Models developed in the context of cell membrane transport provide potential explanations that can be tested experimentally. These models include changes in the activation entropy for diffusion through the cuticular lipids, increased solubility of water in melted lipids, and lateral heterogeneity of the cuticle.  相似文献   

15.
Riedel M  Eichner A  Meimberg H  Jetter R 《Planta》2007,225(6):1517-1534
Plants of the carnivorous genus Nepenthes efficiently trap insects in leaf pitchers, mostly employing epicuticular wax crystals on the pitcher walls to make them slippery for the prey. In the present study, the compositions and micromorphologies of the wax crystals of five Nepenthes species and hybrids were analysed in order to test whether the chemical principles underlying this ecological function are widespread within the genus. Three wax layers could be distinguished within the Nepenthes pitcher cuticles: (1) the outermost part of the crystals forming the platelets visible in standard scanning electron microscopy, (2) the bottom portion of the epicuticular wax crystals, and (3) an intracuticular wax layer. The composition of the intracuticular wax differed significantly from that of the neighbouring epicuticular layer. The compositions of corresponding wax mixtures from all five Nepenthes species and hybrids were very similar, with almost equal amounts of very long chain aldehydes and primary alcohols. While triacontanal (C30 aldehyde) was prevailing in the epicuticular crystals of Nepenthes albomarginata and Nepenthes x intermedia, Nepenthes x superba and Nepenthes x henriana were found to have especially high percentages of dotriacontanal (C32 aldehyde). Nepentheskhasiana” had an intermediate aldehyde composition with almost equal amounts of both chain lengths.  相似文献   

16.
Previous research has shown that cuticular triterpenoids are exclusively found in the intracuticular wax layer of Prunus laurocerasus. To investigate whether this partitioning was species-specific, the intra- and epicuticular waxes were identified and quantified for the glossy leaves of Ligustrum vulgare, an unrelated shrub with similar wax morphology. Epicuticular wax was mechanically stripped from the adaxial leaf surface using the adhesive gum arabic. Subsequently, the organic solvent chloroform was used to extract the intracuticular wax from within the cutin matrix. The isolated waxes were quantified using gas chromatography with flame ionization detection and identified by mass spectrometry. The results were visually confirmed by scanning electron microscopy. The outer wax layer consisted entirely of homologous series of very-long-chain aliphatic compound classes. By contrast, the inner wax layer was dominated (80%) by two cyclic triterpenoids, ursolic and oleanolic acid. The accumulation of triterpenoids in the intracuticular leaf wax of a second, unrelated species suggests that this localization may be a more general phenomenon in smooth cuticles lacking epicuticular wax crystals. The mechanism and possible ecological or physiological reasons for this separation are currently being investigated.  相似文献   

17.
Epicuticular and intracuticular waxes from both adaxial and abaxial surfaces of the leaves of Kalanchoe daigremontiana were analyzed. All wax mixtures were found to contain approximately equal amounts of triterpenoids and very long chain fatty acid (VLCFA) derivatives. The triterpenoid fraction consisted of glutinol (8-19% of the total wax) and friedelin (4-9%), together with smaller amounts of glutanol, glutinol acetate, epifriedelanol, germanicol and β-amyrin. The VLCFA derivatives comprised C27-C35 alkanes (19-37% of the total wax), C32-C34 aldehydes (3-7%), C32 and C34 fatty acids (0.2-3%), C26-C36 primary alcohols (4-8%), and C42-C52 alkyl esters (2-9%). The wax layers were found to differ in triterpenoid amounts, with the intracuticular wax containing higher percentages of most triterpenoids than the epicuticular wax. Friedelin, the only triterpenoid ketone present, showed the opposite distribution with higher proportions in the epicuticular wax. VLCFA derivatives also accumulated to higher percentages in the epicuticular than in the intracuticular wax layer. Epicuticular wax crystals were observed on both the adaxial and abaxial leaf surfaces.  相似文献   

18.
We analysed changes in cuticular hydrocarbon signatures of workers in orphaned colonies of the paper wasp Polistes dominulus. In natural conditions, workers and foundresses possess characteristic cuticular signatures, and foundresses are further distinguishable, both behaviourally and chemically, on the basis of their rank in a reproductive dominance hierarchy. In our study, several workers were found to develop their ovaries and produce cuticular signatures resembling those of dominant foundresses, while remaining workers possessed undeveloped ovaries and had cuticular blends characteristic of subordinate foundresses. Workers that did not develop their ovaries had changed epicuticular signatures, demonstrating that the mixture of hydrocarbons of worker individuals is strongly dependent on social role and environment. Our results suggest that the composition of epicuticular lipids is not determined at the pre-imaginal stage, and that physiological pathways leading to cuticular chemical changes are similar in foundresses and workers of P. dominulus.  相似文献   

19.
Though mulberry (Morus alba) tree shows great adaptations to various climate conditions, their leaf water status and photosynthesis are sensitive to climate changes. In the current study, seven widely planted mulberry cultivars in Chongqing, Southwest China, were selected to analyze leaf cuticular wax characteristics, gas exchange index, post-harvest leaf water status and their relationships, aiming to provide new theory in screening high resistant mulberry cultivars. Mulberry trees formed rounded cap-type idioblasts on the adaxial leaf surface. Film-like waxes and granule-type wax crystals covered leaf surfaces, varying in crystal density among cultivars. The stomatal aperture on the abaxial surface of cultivars with high wax amount was smaller than that of cultivars with low wax amount. The amount of total wax was negatively correlated with the net photosynthetic rate (P N), transpiration rate (E) and stomatal conductance (g s) and positively correlated with the moisture retention capacity. It suggested that both cuticular wax and stomatal factor might be involved in regulating water loss in mulberry leaves under field conditions. The variability in moisture retention capacity and cuticular wax characteristics might be important in evaluating and screening mulberry cultivars for increasing silk quality and silkworm productivity.  相似文献   

20.
The leaf surface properties of 11 cuticular wax mutants of maize were characterized, and this information was used to identify the quantitative relations among distinct leaf surface traits. Compared with the wild‐type maize, these mutants were reduced 3–24% in their leaf surface hydrophobicity, 20–88% in the mass of cuticular waxes on their leaves, and 52–94% in the percentage of planar leaf surface area covered with epicuticular crystalline waxes. They also differed in the presence and abundance of the epicuticular crystalline waxes in each of seven structural classes. With the exception of one mutant, the mass of cuticular waxes produced by these mutants was positively correlated with the number of epicuticular crystalline waxes per unit area on their leaves. Furthermore, an increase of 0·4 mg of cuticular wax per gram of leaf (dry weight) was associated with a 1% increase in leaf surface area covered by epicuticular crystalline waxes, and this 1% increase was associated with a 2° increase in the contact angle of a water droplet on the leaf surface. Linear differences in the leaf surface hydrophobicity were associated with exponential differences in the mass of the cuticular waxes produced. Quantitative knowledge of these leaf surface properties is highly relevant to the interactions of leaves with environmental factors such as microbes, insects, agricultural chemicals, and pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号