首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Primary aerial surfaces of land plants are coated by a lipidic cuticle, which forms a barrier against transpirational water loss and protects the plant from diverse stresses. Four enzymes of a fatty acid elongase complex are required for the synthesis of very-long-chain fatty acid (VLCFA) precursors of cuticular waxes. Fatty acid elongase substrate specificity is determined by a condensing enzyme that catalyzes the first reaction carried out by the complex. In Arabidopsis (Arabidopsis thaliana), characterized condensing enzymes involved in wax synthesis can only elongate VLCFAs up to 28 carbons (C28) in length, despite the predominance of C29 to C31 monomers in Arabidopsis stem wax. This suggests additional proteins are required for elongation beyond C28. The wax-deficient mutant eceriferum2 (cer2) lacks waxes longer than C28, implying that CER2, a putative BAHD acyltransferase, is required for C28 elongation. Here, we characterize the cer2 mutant and demonstrate that green fluorescent protein-tagged CER2 localizes to the endoplasmic reticulum, the site of VLCFA biosynthesis. We use site-directed mutagenesis to show that the classification of CER2 as a BAHD acyltransferase based on sequence homology does not fit with CER2 catalytic activity. Finally, we provide evidence for the function of CER2 in C28 elongation by an assay in yeast (Saccharomyces cerevisiae).Land plants have a lipidic cuticle that seals the outer surface of all of their primary aerial organs. Structurally, the cuticle consists of two components, cutin and cuticular waxes. Together these form a hydrophobic barrier that plays a critical role in plant survival by restricting nonstomatal water loss (Riederer and Schreiber, 2001). Cuticles also protect the plant from biotic and abiotic stresses, profoundly affect plant-insect interactions (Müller, 2006), prevent epidermal fusions (Sieber et al., 2000), and are involved in drought stress signaling (Wang et al., 2011).Cutin is a polymer of mainly midchain- and ω-hydroxy and -epoxy 16 carbon (C16) and C18 fatty acids, which are cross-linked in ester bonds directly or through a glycerol backbone (Pollard et al., 2008). Cuticular waxes are aliphatic monomers that are deposited within the cutin matrix as intracuticular wax, and on top of it as epicuticular wax film and crystals. Wax is a heterogeneous mixture of very-long-chain fatty acids (VLCFAs) and their alkane, aldehyde, alcohol, ketone, and ester derivatives, which typically range from C24 to C32 in length (Samuels et al., 2008). The composition of cuticular wax varies greatly among species and tissues, often providing physical and chemical properties to the plant surface that are advantageous in specific environments.Genetic analyses have revealed that a fatty acid elongase (FAE) complex is responsible for the synthesis of VLCFA wax precursors (Millar et al., 1999; Fiebig et al., 2000; Kunst and Samuels, 2009). FAE complexes are heterotetramers of independently transcribed, monofunctional proteins localized to the endoplasmic reticulum (ER). Together, they catalyze a series of four reactions to elongate long-chain acyl-CoAs or very-long-chain acyl-CoAs by sequential addition of two carbon units. The condensing enzyme, or β-ketoacyl-CoA synthase (KCS), catalyzes the first reaction in this sequence and is both rate limiting and specific for the chain length of acyl-CoA synthesized (Millar and Kunst, 1997). Two very dissimilar families of KCSs have been identified in Arabidopsis (Arabidopsis thaliana): a FAE1-type family homologous to the first such KCS enzyme discovered in association with seed oil biosynthesis (Kunst et al., 1992; James et al., 1995; Lassner et al., 1996), and an ELONGATION DEFECTIVE (ELO)-like family homologous to the yeast (Saccharomyces cerevisiae) ELO family responsible for sphingolipid synthesis (Dunn et al., 2004). To date, no function has been ascribed to Arabidopsis ELOs. Of the 21 FAE1-type KCS enzymes in Arabidopsis (Joubès et al., 2008), 11 have been shown by microarray analysis to be up-regulated in the stem epidermis (Suh et al., 2005). Only one of these, ECERIFERUM6 (CER6/KCS6/CUT1; Millar et al., 1999; Fiebig et al., 2000; Joubès et al., 2008), has a dominant role in the elongation of VLCFAs for cuticular wax synthesis, as CER6 suppression results in a dramatic reduction of all wax monomers longer than C24 (Millar et al., 1999). Heterologous expression of CER6 in yeast has demonstrated that the CER6 condensing enzyme can produce C28 VLCFAs (O. Rowland and L. Kunst, unpublished data). However, CER6 appears to be unable to produce VLCFAs longer than C28 in yeast; this presents a problem as the bulk of Arabidopsis stem wax is made up of C29 alkanes, secondary alcohols, and ketones derived from C30 VLCFAs. Mutant screens have not revealed any other KCS enzymes necessary for VLCFA elongation past C28 in Arabidopsis. Therefore, there may be other proteins unrelated to condensing enzymes that are required for acyl chain extension beyond C28 that remain unknown.The wax-deficient mutant cer2 shows a dramatic reduction in all stem waxes longer than C28 and increased accumulation of waxes C28 or shorter, suggesting that CER2 has a role in the final steps of VLCFA elongation. Surprisingly, the cer2 mutation has been mapped to At4g24510 (Negruk et al., 1996; Xia et al., 1996), a gene homologous to plant BAHD acyltransferases. However, the CER2 protein was reported to localize exclusively to the nucleus (Xia et al., 1997). This does not fit with CER2 annotation as a BAHD acyltransferase, as all characterized BAHD acyltransferases are soluble cytosolic enzymes (D’Auria, 2006).The objective of this work was to more precisely evaluate the role of CER2 in fatty acid elongation using a new CER2 allele, cer2-5 (Columbia-0 [Col-0] ecotype). We provide evidence that CER2 has a metabolic function specific to wax synthesis, and that the CER2 homolog CER2-LIKE1 has an analogous role in leaf wax synthesis. Despite the classification of CER2 as a BAHD acyltransferase based on sequence homology, we demonstrate that CER2 cannot share the catalytic mechanism that has been confirmed for other members of the BAHD family, and provide biochemical support for a function of CER2 in VLCFA elongation by an assay in yeast.  相似文献   

3.
4.
Very-long-chain fatty acids (VLCFAs) with chain lengths from 20 to 34 carbons are involved in diverse biological functions such as membrane constituents, a surface barrier, and seed storage compounds. The first step in VLCFA biosynthesis is the condensation of two carbons to an acyl-coenzyme A, which is catalyzed by 3-ketoacyl-coenzyme A synthase (KCS). In this study, amino acid sequence homology and the messenger RNA expression patterns of 21 Arabidopsis (Arabidopsis thaliana) KCSs were compared. The in planta role of the KCS9 gene, showing higher expression in stem epidermal peels than in stems, was further investigated. The KCS9 gene was ubiquitously expressed in various organs and tissues, including roots, leaves, and stems, including epidermis, silique walls, sepals, the upper portion of the styles, and seed coats, but not in developing embryos. The fluorescent signals of the KCS9::enhanced yellow fluorescent protein construct were merged with those of BrFAD2::monomeric red fluorescent protein, which is an endoplasmic reticulum marker in tobacco (Nicotiana benthamiana) epidermal cells. The kcs9 knockout mutants exhibited a significant reduction in C24 VLCFAs but an accumulation of C20 and C22 VLCFAs in the analysis of membrane and surface lipids. The mutant phenotypes were rescued by the expression of KCS9 under the control of the cauliflower mosaic virus 35S promoter. Taken together, these data demonstrate that KCS9 is involved in the elongation of C22 to C24 fatty acids, which are essential precursors for the biosynthesis of cuticular waxes, aliphatic suberins, and membrane lipids, including sphingolipids and phospholipids. Finally, possible roles of unidentified KCSs are discussed by combining genetic study results and gene expression data from multiple Arabidopsis KCSs.Very-long-chain fatty acids (VLCFAs) are fatty acids of 20 or more carbons in length and are essential precursors of functionally diverse lipids, cuticular waxes, aliphatic suberins, phospholipids, sphingolipids, and seed oils in the Brassicaceae. These lipids are involved in various functions, such as acting as protective barriers between plants and the environment, impermeable barriers to water and ions, energy-storage compounds in seeds, structural components of membranes, and lipid signaling, which is involved in the hypersensitive response (Pollard et al., 2008; Kunst and Samuels, 2009; Franke et al., 2012). VLCFAs are synthesized by the microsomal fatty acid elongase complex, which catalyzes the cyclic addition of a C2 moiety obtained from malonyl-CoA to C16 or C18 acyl-CoA. The fatty acid elongation process has been shown to proceed through a series of four reactions: condensation of the C2 carbon moiety to acyl-CoA by 3-ketoacyl coenzyme A synthase (KCS), reduction of KCS by 3-ketoacyl coenzyme A reductase (KCR), dehydration of 3-hydroxyacyl-CoA by 3-hydroxyacyl-CoA dehydratase (PAS2), and reduction of trans-2,3-enoyl-CoA by trans-2-enoyl-CoA reductase (ECR). Except for KCS isoforms with redundancy, disruption of KCR1, ECR/ECERIFERUM10 (CER10), or PAS2 exhibited severe morphological abnormalities and embryo lethality, suggesting that VLCFA homeostasis is essential for plant developmental processes (Zheng et al., 2005; Bach et al., 2008; Beaudoin et al., 2009).Cuticular waxes that cover plant aerial surfaces are known to be involved in limiting nonstomatal water loss and gaseous exchanges (Boyer et al., 1997; Riederer and Schreiber, 2001), repelling lipophilic pathogenic spores and dust (Barthlott and Neinhuis, 1997), and protecting plants from UV light (Reicosky and Hanover, 1978). VLCFAs that are synthesized in the epidermal cells are either directly used or further modified into aldehydes, alkanes, secondary alcohols, ketones, primary alcohols, and wax esters for the synthesis of cuticular waxes. Reverse genetic analysis and Arabidopsis (Arabidopsis thaliana) epidermal peel microarray analysis (Suh et al., 2005) has enabled the research community to identify the functions of many genes involved in cuticular wax biosynthesis (Kunst and Samuels, 2009): CER1 (Bourdenx et al., 2011; Bernard et al., 2012), WAX2/CER3 (Chen et al., 2003; Rowland et al., 2007; Bernard et al., 2012), and MAH1(Greer et al., 2007; Wen and Jetter, 2009) have been shown to be involved in the decarbonylation pathway to form aldehydes, alkanes, secondary alcohols, and ketones, and acyl-coenzyme A reductase (FAR; Aarts et al., 1997; Rowland et al., 2006) and WSD1 (Li et al., 2008) have been shown to be involved in the decarboxylation pathway for the synthesis of primary alcohols and wax esters. The export of wax precursors to the extracellular space is mediated by a heterodimer of the ATP-binding cassette transporters in the plasma membrane (Pighin et al., 2004; Bird et al., 2007; McFarlane et al., 2010). In addition, glycosylphosphatidylinositol-anchored LTP (LTPG1) and LTPG2 contribute either directly or indirectly to the export of cuticular wax (DeBono et al., 2009; Lee et al., 2009; Kim et al., 2012).VLCFAs that are synthesized in the endodermis of primary roots, seed coats, and the chalaza-micropyle region of seeds are used as precursors for the synthesis of aliphatic suberins. The suberin layer is known to function as a barrier against uncontrolled water, gas, and ion loss and provides protection from environmental stresses and pathogens (Pollard et al., 2008; Franke et al., 2012). For aliphatic suberin biosynthesis, the ω-carbon of the VLCFAs is oxidized by the fatty acyl ω-hydroxylase (Xiao et al., 2004; Li et al., 2007; Höfer et al., 2008; Molina et al., 2008, 2009; Compagnon et al., 2009; Li-Beisson et al., 2009), and the ω-hydroxy VLCFAs are further oxidized into α,ω-dicarboxylic acids by the HOTHEAD-like oxidoreductase (Kurdyukov et al., 2006). α,ω-Dicarboxylic acids are acylated to glycerol-3-P via acyl-CoA:glycerol-3-P acyltransferase (Beisson et al., 2007; Li et al., 2007; Li-Beisson et al., 2009; Yang et al., 2010) or to ferulic acid. In addition, C18, C20, and C22 fatty acids are also reduced by FAR enzymes to primary fatty alcohols, which are a common component in root suberin (Vioque and Kolattukudy, 1997). Finally, the aliphatic suberin precursors are likely to be extensively polymerized and cross linked with the polysaccharides or lignins in the cell wall.In addition, VLCFAs are found in sphingolipids, including glycosyl inositolphosphoceramides, glycosylceramides, and ceramides and phospholipids, such as phosphatidylethanolamine (PE) and phosphatidyl-Ser (PS), which are present in the extraplastidial membrane (Pata et al., 2010; Yamaoka et al., 2011). For sphingolipid biosynthesis, VLCFA-CoAs and Ser are condensed to form 3-keto-sphinganine, which is subsequently reduced to produce sphinganine, a long chain base (LCB). LCBs are known to be further modified by 4-hydroxylation, 4-desaturation, and 8-desaturation (Lynch and Dunn, 2004; Chen et al., 2006, 2012; Pata et al., 2010). The additional VLCFAs are linked with 4-hydroxy LCBs via an amino group to form ceramides (Chen et al., 2008). The presence of VLCFA in sphingolipids may contribute to an increase of their hydrophobicity, membrane leaflet interdigitation, and the transition from a fluid to a gel phase, which is required for microdomain formation. In plants, PS is synthesized from CDP-diacylglycerol and Ser by PS synthase or through an exchange reaction between a phospholipid head group and Ser by a calcium-dependent base-exchange-type PS synthase (Vincent et al., 1999; Yamaoka et al., 2011). PE biosynthesis proceeds through decarboxylation via PS decarboxylase (Nerlich et al., 2007), the phosphoethanolamine transfer from CDP-ethanolamine to diacylglycerol (Kennedy pathway), and the exchange of the head group of PE with Ser via a base-exchange enzyme (Marshall and Kates, 1973). In particular, PS containing a relatively large amount of VLCFAs is enriched in endoplasmic reticulum (ER)-derived vesicles that may function in stabilizing small (70- to 80-nm-diameter) vesicles (Vincent et al., 2001).During the fatty acid elongation process, the first committed step is the condensation of C2 units to acyl-CoA by KCS. Arabidopsis harbors a large family containing 21 KCS members (Joubès et al., 2008). Characterization of Arabidopsis KCS mutants with defects in VLCFA synthesis revealed in planta roles and substrate specificities (based on differences in carbon chain length and degree of unsaturation) of KCSs. For example, FAE1, a seed-specific condensing enzyme, was shown to catalyze C20 and C22 VLCFA biosynthesis for seed storage lipids (James et al., 1995). KCS6/CER6/CUT1 and KCS5/CER60 are involved in the elongation of fatty acyl-CoAs longer than C28 VLCFA for cuticular waxes in epidermis and pollen coat lipids (Millar et al., 1999; Fiebig et al., 2000; Hooker et al., 2002). KCS20 and KCS2/DAISY are functionally redundant in the two-carbon elongation to C22 VLCFA, which is required for cuticular wax and root suberin biosynthesis (Franke et al., 2009; Lee et al., 2009). When KCS1 and KCS9 were expressed in yeast (Saccharomyces cerevisiae), KCS1 showed broad substrate specificity for saturated and monounsaturated C16 to C24 acyl-CoAs and KCS9 utilized the C16 to C22 acyl-CoAs (Trenkamp et al., 2004; Blacklock and Jaworski, 2006; Paul et al., 2006). Recently, CER2 encoding putative BAHD acyltransferase was reported to be a fatty acid elongase that was involved in the elongation of C28 fatty acids for the synthesis of wax precursors (Haslam et al., 2012).In this study, the expression patterns and subcellular localization of KCS9 were examined, and an Arabidopsis kcs9 mutant was isolated to investigate the roles of KCS9 in planta. Diverse classes of lipids, including cuticular waxes, aliphatic suberins, and sphingolipids, as well as fatty acids in various organs were analyzed from the wild type, the kcs9 mutant, and complementation lines. The combined results of this study revealed that KCS9 is involved in the elongation of C22 to C24 fatty acids, which are essential precursors for the biosynthesis of cuticular waxes, aliphatic suberins, and membrane lipids, including sphingolipids. To the best of our knowledge, this is the first study where a KCS9 isoform involved in sphingolipid biosynthesis was identified.  相似文献   

5.
6.
7.
Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host.Plant pathogens are often classified as necrotrophic or biotrophic, depending on their infection strategy (Glazebrook, 2005; Nishimura and Dangl, 2010). Necrotrophic pathogens kill living host cells and use the decayed plant tissue as a substrate to colonize the plant, whereas biotrophic pathogens parasitize living plant cells by employing effector molecules that suppress the host immune system (Pel and Pieterse, 2013). Despite this binary classification, the majority of pathogenic microbes employ a hemibiotrophic infection strategy, which is characterized by an initial biotrophic phase followed by a necrotrophic infection strategy at later stages of infection (Perfect and Green, 2001). The pathogenic fungi Magnaporthe grisea, Sclerotinia sclerotiorum, and Mycosphaerella graminicola, the oomycete Phytophthora infestans, and the bacterial pathogen Pseudomonas syringae are examples of hemibiotrophic plant pathogens (Perfect and Green, 2001; Koeck et al., 2011; van Kan et al., 2014; Kabbage et al., 2015).Despite considerable progress in our understanding of plant resistance to necrotrophic and biotrophic pathogens (Glazebrook, 2005; Mengiste, 2012; Lai and Mengiste, 2013), recent debate highlights the dynamic and complex interplay between plant-pathogenic microbes and their hosts, which is raising concerns about the use of infection strategies as a static tool to classify plant pathogens. For instance, the fungal genus Botrytis is often labeled as an archetypal necrotroph, even though there is evidence that it can behave as an endophytic fungus with a biotrophic lifestyle (van Kan et al., 2014). The rice blast fungus Magnaporthe oryzae, which is often classified as a hemibiotrophic leaf pathogen (Perfect and Green, 2001; Koeck et al., 2011), can adopt a purely biotrophic lifestyle when infecting root tissues (Marcel et al., 2010). It remains unclear which signals are responsible for the switch from biotrophy to necrotrophy and whether these signals rely solely on the physiological state of the pathogen, or whether host-derived signals play a role as well (Kabbage et al., 2015).The plant hormones salicylic acid (SA) and jasmonic acid (JA) play a central role in the activation of plant defenses (Glazebrook, 2005; Pieterse et al., 2009, 2012). The first evidence that biotrophic and necrotrophic pathogens are resisted by different immune responses came from Thomma et al. (1998), who demonstrated that Arabidopsis (Arabidopsis thaliana) genotypes impaired in SA signaling show enhanced susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis (formerly known as Peronospora parastitica), while JA-insensitive genotypes were more susceptible to the necrotrophic fungus Alternaria brassicicola. In subsequent years, the differential effectiveness of SA- and JA-dependent defense mechanisms has been confirmed in different plant-pathogen interactions, while additional plant hormones, such as ethylene, abscisic acid (ABA), auxins, and cytokinins, have emerged as regulators of SA- and JA-dependent defenses (Bari and Jones, 2009; Cao et al., 2011; Pieterse et al., 2012). Moreover, SA- and JA-dependent defense pathways have been shown to act antagonistically on each other, which allows plants to prioritize an appropriate defense response to attack by biotrophic pathogens, necrotrophic pathogens, or herbivores (Koornneef and Pieterse, 2008; Pieterse et al., 2009; Verhage et al., 2010).In addition to plant hormones, reactive oxygen species (ROS) play an important regulatory role in plant defenses (Torres et al., 2006; Lehmann et al., 2015). Within minutes after the perception of pathogen-associated molecular patterns, NADPH oxidases and apoplastic peroxidases generate early ROS bursts (Torres et al., 2002; Daudi et al., 2012; O’Brien et al., 2012), which activate downstream defense signaling cascades (Apel and Hirt, 2004; Torres et al., 2006; Miller et al., 2009; Mittler et al., 2011; Lehmann et al., 2015). ROS play an important regulatory role in the deposition of callose (Luna et al., 2011; Pastor et al., 2013) and can also stimulate SA-dependent defenses (Chaouch et al., 2010; Yun and Chen, 2011; Wang et al., 2014; Mammarella et al., 2015). However, the spread of SA-induced apoptosis during hyperstimulation of the plant immune system is contained by the ROS-generating NADPH oxidase RBOHD (Torres et al., 2005), presumably to allow for the sufficient generation of SA-dependent defense signals from living cells that are adjacent to apoptotic cells. Nitric oxide (NO) plays an additional role in the regulation of SA/ROS-dependent defense (Trapet et al., 2015). This gaseous molecule can stimulate ROS production and cell death in the absence of SA while preventing excessive ROS production at high cellular SA levels via S-nitrosylation of RBOHD (Yun et al., 2011). Recently, it was shown that pathogen-induced accumulation of NO and ROS promotes the production of azelaic acid, a lipid derivative that primes distal plants for SA-dependent defenses (Wang et al., 2014). Hence, NO, ROS, and SA are intertwined in a complex regulatory network to mount local and systemic resistance against biotrophic pathogens. Interestingly, pathogens with a necrotrophic lifestyle can benefit from ROS/SA-dependent defenses and associated cell death (Govrin and Levine, 2000). For instance, Kabbage et al. (2013) demonstrated that S. sclerotiorum utilizes oxalic acid to repress oxidative defense signaling during initial biotrophic colonization, but it stimulates apoptosis at later stages to advance necrotrophic colonization. Moreover, SA-induced repression of JA-dependent resistance not only benefits necrotrophic pathogens but also hemibiotrophic pathogens after having switched from biotrophy to necrotrophy (Glazebrook, 2005; Pieterse et al., 2009, 2012).Plectosphaerella cucumerina ((P. cucumerina, anamorph Plectosporum tabacinum) anamorph Plectosporum tabacinum) is a filamentous ascomycete fungus that can survive saprophytically in soil by decomposing plant material (Palm et al., 1995). The fungus can cause sudden death and blight disease in a variety of crops (Chen et al., 1999; Harrington et al., 2000). Because P. cucumerina can infect Arabidopsis leaves, the P. cucumerina-Arabidopsis interaction has emerged as a popular model system in which to study plant defense reactions to necrotrophic fungi (Berrocal-Lobo et al., 2002; Ton and Mauch-Mani, 2004; Carlucci et al., 2012; Ramos et al., 2013). Various studies have shown that Arabidopsis deploys a wide range of inducible defense strategies against P. cucumerina, including JA-, SA-, ABA-, and auxin-dependent defenses, glucosinolates (Tierens et al., 2001; Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014), callose deposition (García-Andrade et al., 2011; Gamir et al., 2012, 2014; Sánchez-Vallet et al., 2012), and ROS (Tierens et al., 2002; Sánchez-Vallet et al., 2010; Barna et al., 2012; Gamir et al., 2012, 2014; Pastor et al., 2014). Recent metabolomics studies have revealed large-scale metabolic changes in P. cucumerina-infected Arabidopsis, presumably to mobilize chemical defenses (Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014). Furthermore, various chemical agents have been reported to induce resistance against P. cucumerina. These chemicals include β-amino-butyric acid, which primes callose deposition and SA-dependent defenses, benzothiadiazole (BTH or Bion; Görlach et al., 1996; Ton and Mauch-Mani, 2004), which activates SA-related defenses (Lawton et al., 1996; Ton and Mauch-Mani, 2004; Gamir et al., 2014; Luna et al., 2014), JA (Ton and Mauch-Mani, 2004), and ABA, which primes ROS and callose deposition (Ton and Mauch-Mani, 2004; Pastor et al., 2013). However, among all these studies, there is increasing controversy about the exact signaling pathways and defense responses contributing to plant resistance against P. cucumerina. While it is clear that JA and ethylene contribute to basal resistance against the fungus, the exact roles of SA, ABA, and ROS in P. cucumerina resistance vary between studies (Thomma et al., 1998; Ton and Mauch-Mani, 2004; Sánchez-Vallet et al., 2012; Gamir et al., 2014).This study is based on the observation that the disease phenotype during P. cucumerina infection differs according to the inoculation method used. We provide evidence that the fungus follows a hemibiotrophic infection strategy when infecting from relatively low spore densities on the leaf surface. By contrast, when challenged by localized host defense to relatively high spore densities, the fungus switches to a necrotrophic infection program. Our study has uncovered a novel strategy by which plant-pathogenic fungi can take advantage of the early immune response in the host plant.  相似文献   

8.
Lipid secretion from epidermal cells to the plant surface is essential to create the protective plant cuticle. Cuticular waxes are unusual secretory products, consisting of a variety of highly hydrophobic compounds including saturated very-long-chain alkanes, ketones, and alcohols. These compounds are synthesized in the endoplasmic reticulum (ER) but must be trafficked to the plasma membrane for export by ATP-binding cassette transporters. To test the hypothesis that wax components are trafficked via the endomembrane system and packaged in Golgi-derived secretory vesicles, Arabidopsis (Arabidopsis thaliana) stem wax secretion was assayed in a series of vesicle-trafficking mutants, including gnom like1-1 (gnl1-1), transport particle protein subunit120-4, and echidna (ech). Wax secretion was dependent upon GNL1 and ECH. Independent of secretion phenotypes, mutants with altered ER morphology also had decreased wax biosynthesis phenotypes, implying that the biosynthetic capacity of the ER is closely related to its structure. These results provide genetic evidence that wax export requires GNL1- and ECH-dependent endomembrane vesicle trafficking to deliver cargo to plasma membrane-localized ATP-binding cassette transporters.The aerial, nonwoody tissues of all land plants are covered by a waxy cuticle that protects the plant against nonstomatal water loss. The cuticle also provides the first barrier between the plant and its environment and mediates important biotic and abiotic interactions. The cuticle has two main components: cutin and waxes. Cutin is a tough, cross-linked polyester matrix primarily composed of C16 and C18 oxygenated fatty acids and glycerol (Pollard et al., 2008). Wax is a heterogenous mixture, primarily composed of very-long-chain (VLC) fatty acid derivatives (predominantly 29-carbon alkane in Arabidopsis [Arabidopsis thaliana] stems).As a result of biochemical approaches, forward genetic screens yielding the eceriferum (cer) mutants (Koornneef et al., 1989), and reverse genetics approaches (Greer et al., 2007), almost all of the enzymes in the wax biosynthesis pathway have been identified. The enzymes that elongate C16 or C18 fatty acids to VLC (greater than 20C) fatty acids are localized in the endoplasmic reticulum (ER; for review, see Haslam and Kunst, 2013). Primary alcohols are synthesized by the fatty acyl reductases (Rowland et al., 2006), while alkanes are generated via an undefined mechanism involving CER1, CER3, and an unidentified cytochrome b5 (Bernard et al., 2012). These alkanes may be modified by the midchain alkane hydroxylase cytochrome P450 (MAH1) to generate secondary alcohols and ketones (Greer et al., 2007). All of these wax synthesis enzymes have also been localized to the ER (Greer et al., 2007; Bernard et al., 2012).In contrast to wax synthesis, comparatively little is known about how waxes are trafficked within the cell from their site of synthesis at the ER to the plasma membrane. ATP-binding cassette (ABC) transporters of the G subfamily are required for wax export, and when either half-transporter is disrupted, waxes accumulate in the ER (McFarlane et al., 2010). Two extracellular glycosylphosphatidylinositol-anchored lipid transfer proteins (LTPs) are further required for wax accumulation on the plant surface (DeBono et al., 2009; Kim et al., 2012). Although these components of the molecular machinery of wax transport at the plasma membrane have been identified, the intracellular mechanisms by which waxes are transported to the plasma membrane remain undefined.Several mechanisms have been hypothesized for the transport of waxes from the ER to the plasma membrane (for review, see Samuels et al., 2008). Waxes could be incorporated into vesicles at the ER, travel to and through the Golgi apparatus and the trans-Golgi network (TGN), and then move to the plasma membrane via vesicle secretion. These vesicles could carry wax components within their membranes, as computational modeling of wax components in lipid bilayers indicates that VLC alkanes partition entirely into the hydrophobic phase of the bilayer (Coll et al., 2007). Alternatively, lipoproteins may bind to lipid molecules in order to solubilize them so that they can be transported as cargo in the vesicle lumen, by analogy to mammalian systems where lipoproteins are secreted from hepatocytes into the circulatory system by exocytosis via post-Golgi vesicles (for review, see Mansbach and Siddiqi, 2010). However, no analogous lipid-binding apoproteins or transport vesicles have been found in plants. It is also possible that LTPs in membrane contact sites between the ER and the plasma membrane could transfer cuticular lipids directly from the ER to the plasma membrane. However, although these membrane contact sites have been observed in plant cells (Samuels and McFarlane, 2012), no structural or functional components of membrane contact sites are known.Early studies of VLC fatty acid trafficking used pulse-chase labeling to show that treatment with monensin, a post-Golgi trafficking inhibitor, results in decreased VLC fatty acid trafficking to the plasma membrane and a corresponding increase in these lipids in the Golgi apparatus (Bertho et al., 1991), suggesting a Golgi-dependent mechanism of VLC lipid trafficking to the plasma membrane. However, the “Golgi” fraction in this study contained significant elongase activity, which has subsequently been localized to the ER, making interpretation of these data difficult. While a variety of inhibitors are available that disrupt different stages in the secretory pathway (Zhang et al., 1993; Robinson et al., 2008), inhibitor studies of wax trafficking have proven ineffective, since the wax-producing epidermal cells do not effectively take up solutions carrying these inhibitors. This illustrates the difficulties of studying the transport of highly hydrophobic cargo, such as wax, within the single cell layer of epidermis.The objective of this study was to determine the intracellular trafficking mechanisms underlying cuticular wax transport from the ER to the plasma membrane. Arabidopsis mutants, which have been successfully applied in wax biosynthesis studies, were used to investigate wax secretion. Well-characterized mutants with defects in vesicle traffic and protein secretion were chosen to test the hypothesis that wax components are trafficked via endomembrane vesicles. These mutant analyses indicate that wax movement from the ER to the plasma membrane requires vesicle traffic at both the ER-Golgi interface and the TGN. Independent of secretion phenotypes, strong decreases in wax synthesis were observed in mutants with altered ER morphology, which implies that ER structure influences its biosynthetic capacity for wax production.  相似文献   

9.
10.
11.
12.
In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.Aerenchyma formation is a morphological adaptation of plants to complete submergence and waterlogging of the soil, and facilitates internal gas diffusion (Armstrong, 1979; Jackson and Armstrong, 1999; Colmer, 2003; Voesenek et al., 2006; Bailey-Serres and Voesenek, 2008; Licausi and Perata, 2009; Sauter, 2013; Voesenek and Bailey-Serres, 2015). To adapt to waterlogging in soil, rice (Oryza sativa) develops lysigenous aerenchyma in shoots (Matsukura et al., 2000; Colmer and Pedersen, 2008; Steffens et al., 2011) and roots (Jackson et al., 1985b; Justin and Armstrong, 1991; Kawai et al., 1998), which is formed by programmed cell death and subsequent lysis of some cortical cells (Jackson and Armstrong, 1999; Evans, 2004; Yamauchi et al., 2013). In rice roots, lysigenous aerenchyma is constitutively formed under aerobic conditions (Jackson et al., 1985b), and its formation is further induced under oxygen-deficient conditions (Colmer et al., 2006; Shiono et al., 2011). The former and latter are designated constitutive and inducible lysigenous aerenchyma formation, respectively (Colmer and Voesenek, 2009). The gaseous plant hormone ethylene regulates adaptive growth responses of plants to submergence (Voesenek and Blom, 1989; Voesenek et al., 1993; Visser et al., 1996a,b; Lorbiecke and Sauter, 1999; Hattori et al., 2009; Steffens and Sauter, 2009; van Veen et al., 2013). Ethylene also induces lysigenous aerenchyma formation in roots of some gramineous plants (Drew et al., 2000; Shiono et al., 2008). The treatment of roots with ethylene or its precursor (1-aminocyclopropane-1-carboxylic acid [ACC]) stimulates aerenchyma formation in rice (Justin and Armstrong, 1991; Colmer et al., 2006; Yukiyoshi and Karahara, 2014), maize (Zea mays; Drew et al., 1981; Jackson et al., 1985a; Takahashi et al., 2015), and wheat (Triticum aestivum; Yamauchi et al., 2014a,b). Moreover, treatment of roots with inhibitors of ethylene action or ethylene biosynthesis effectively blocks aerenchyma formation under hypoxic conditions in maize (Drew et al., 1981; Konings, 1982; Jackson et al., 1985a; Rajhi et al., 2011).Ethylene biosynthesis is accomplished by two main successive enzymatic reactions: conversion of S-adenosyl-Met to ACC by 1-aminocyclopropane-1-carboxylic acid synthase (ACS), and conversion of ACC to ethylene by 1-aminocyclopropane-1-carboxylic acid oxidase (ACO; Yang and Hoffman, 1984). The activities of both enzymes are enhanced during aerenchyma formation under hypoxic conditions in maize root (He et al., 1996). Since the ACC content in roots of maize is increased by oxygen deficiency and is strongly correlated with ethylene production (Atwell et al., 1988), ACC biosynthesis is essential for ethylene production during aerenchyma formation in roots. In fact, exogenously supplied ACC induced ethylene production in roots of maize (Drew et al., 1979; Konings, 1982; Atwell et al., 1988) and wheat (Yamauchi et al., 2014b), even under aerobic conditions. Ethylene production in plants is inversely related to oxygen concentration (Yang and Hoffman, 1984). Under anoxic conditions, the oxidation of ACC to ethylene by ACO, which requires oxygen, is almost completely repressed (Yip et al., 1988; Tonutti and Ramina, 1991). Indeed, anoxic conditions stimulate neither ethylene production nor aerenchyma formation in maize adventitious roots (Drew et al., 1979). Therefore, it is unlikely that the root tissues forming inducible aerenchyma are anoxic, and that the ACO-mediated step is repressed. Moreover, aerenchyma is constitutively formed in rice roots even under aerobic conditions (Jackson et al., 1985b), and thus, after the onset of waterlogging, oxygen can be immediately supplied to the apical regions of roots through the constitutively formed aerenchyma.Very-long-chain fatty acids (VLCFAs; ≥20 carbons) are major constituents of sphingolipids, cuticular waxes, and suberin in plants (Franke and Schreiber, 2007; Kunst and Samuels, 2009). In addition to their structural functions, VLCFAs directly or indirectly participate in several physiological processes (Zheng et al., 2005; Reina-Pinto et al., 2009; Roudier et al., 2010; Ito et al., 2011; Nobusawa et al., 2013; Tsuda et al., 2013), including the regulation of ethylene biosynthesis (Qin et al., 2007). During fiber cell elongation in cotton ovules, ethylene biosynthesis is enhanced by treatment with saturated VLCFAs, especially 24-carbon fatty acids, and is suppressed by an inhibitor of VLCFA biosynthesis (Qin et al., 2007). The first rate-limiting step in VLCFA biosynthesis is condensation of acyl-CoA with malonyl-CoA by β-ketoacyl-CoA synthase (KCS; Joubès et al., 2008). KCS enzymes are thought to determine the substrate and tissue specificities of fatty acid elongation (Joubès et al., 2008). The Arabidopsis (Arabidopsis thaliana) genome has 21 KCS genes (Joubès et al., 2008). In the Arabidopsis cut1 mutant, which has a defect in the gene encoding CUT1 that is required for cuticular wax production (i.e. one of the KCS genes), the expression of AtACO genes and growth of root cells were reduced when compared with the wild type (Qin et al., 2007). Furthermore, expression of the AtACO genes was rescued by exogenously supplied saturated VLCFAs (Qin et al., 2007). These observations imply that VLCFAs or their derivatives work as regulatory factors for gene expression during some physiological processes in plants.reduced culm number1 (rcn1) was first identified as a rice mutant with a low tillering rate in a paddy field (Takamure and Kinoshita, 1985; Yasuno et al., 2007). The rcn1 (rcn1-2) mutant has a single nucleotide substitution in the gene encoding a member of the ATP-binding cassette (ABC) transporter subfamily G, RCN1/OsABCG5, causing an Ala-684Pro substitution (Yasuno et al., 2009). The mutation results in several mutant phenotypes, although the substrates of RCN1/OsABCG5 have not been determined (Ureshi et al., 2012; Funabiki et al., 2013; Matsuda et al., 2014). We previously found that the rcn1 mutant has abnormal root morphology, such as shorter root length and brownish appearance of roots, under stagnant (deoxygenated) conditions (which mimics oxygen-deficient conditions in waterlogged soils). We also found that the rcn1 mutant accumulates less of the major suberin monomers originating from VLCFAs in the outer part of adventitious roots, and this results in a reduction of a functional apoplastic barrier in the root hypodermis (Shiono et al., 2014a).The objective of this study was to elucidate the molecular basis of inducible aerenchyma formation. To this end, we examined lysigenous aerenchyma formation and ACC, ethylene, and VLCFA accumulation and their biosyntheses in rcn1 roots. Based on the results of these studies, we propose that VLCFAs are involved in inducible aerenchyma formation through the enhancement of ethylene biosynthesis in rice roots.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号