首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of phosphorus limitedAsterionella on the zoospore production of its fungal parasiteRhizophydium planktonicum was measured, using laboratory cultures of host and parasite. At saturated phosphorus concentrations the host reached a specific growth rate of 0.95.d–1. Growing on these host cells, the mean parasite zoospore production was 26 spores per sporangium, and the mean development time of a sporangium was 45 hours. Growing on phosphorus limited hosts, the zoospore production decreased to less then 9 spores per sporangium, and the development time decreased to 40 hours. On phosphorus limited hosts, zoospores were produced at a slower rate. The algal growth rate was reduced to a greater extent than the fungal growth rate. Therefore, it could be concluded that phosphorus limitation ofAsterionella will facilitate the development of an epidemic of its parasiteRhizophidium, at least at high diatom densities, when possible differences in infectability of the algae play a minor role.  相似文献   

2.
Growth parameters of the diatom Astenonella formosa Hass, andits fungal parasite Rhizophydium planktoniacum Canter emend,were measured at five temperatures and six light intensitieswith a 15?9 h light:dark cycle, using laboratory cultures ofboth organisms. With the parameter values obtained, thresholdhost densities were calculated in order to estimate the effectsof light and temperature on survival and epidemic developmentof the parasite The uninfected host reached light-saturatedgrowth rates between 0.917 day1 at 21?C and 0 285 day1at 2?C. Under light limitation the optimum growth temperaturefor Asterionella decreased because of a reduced growth efficiencyGrowth inhibition at high irradiances was only observed at 2?CThe parasite reached the highest zoospore production at 2?Cand saturating irradiances: 30 2 zoospores per sporangium. Thisvalue was consistently reduced by lower irradiances and highertemperatures to only 2.2 zoospores at the opposite light andtemperature extremes Low light conditions depressed also theinfectivity of the zoospores At very low irradiances, they becamecompletely uninfective The light dependence of zoospore productionand infectivity was restricted to light intensities that limitedthe growth rate of the host. The development time of the sporangiaand the mfecti ve lifetime of the zoospores were not affectedby light but only by temperature, and ranged from 19.0 and 121 days respectively at 2?C to 1.9 and 2 1 days at 21?C- Theseeffects result in optimal conditions for the development ofa Rhizophydium epidemic at 11?C and a moderate light limitationof Astenonella At temperature above 7?C, the possibilities forepidemic development are only slightly affected by light andtemperature, except for very low irradiance levels, when thezoospores of the parasite become uninfective. However, below5?C the development of an epidemic is only possible at limitinglight levels. Conditions for survival of the parasite at lowhost densities are optimal at low temperatures and high irradiancelevels  相似文献   

3.
Some chytrids are host‐specific parasiticfungithat may have a considerable impact on phytoplankton dynamics. The phylum Chytridiomycota contains one class, the Chytridiomycetes, and is composed of five different orders. Molecular studies now firmly place the Chytridiomycota within the fungal kingdom. Chytrids are characterized by having zoospores, a motile stage in their life cycle. Zoospores are attracted to the host cell by specific signals. No single physical–chemical factor has been found that fully explains the dynamics of chytrid epidemics in the field. Fungal periodicity was primarily related to host cell density. The absence of aggregated distributions of chytrids on their hosts suggested that their hosts did not vary in their susceptibility to infection. A parasite can only become epidemic when it grows faster than the host. Therefore, it has been suggested that epidemics in phytoplankton populations arise when growth conditions for the host are unfavorable. No support for such a generalization was found, however. Growth of the parasitic fungus Rhizophydium planktonicum Canter emend, parasitic on the diatom Asterionella formosa Hassal, was reduced under stringent nutrient limitation,because production and infectivity of zoospores were affected negatively. A moderate phosphorous or light limitation favored epidemic development, however. Chytrid infections have been shown to affect competition between their algal hosts and in this way altered phytoplankton succession. There is potential for coevolution between Asterionella and the chytrid Zygorhizidium planktonicum Canter based on clear reciprocal fitness costs, absence of overall infective parasite strains, and possibly a genetic basis for host susceptibility and parasite infectivity.  相似文献   

4.
The influence of hight limitation of the diatom Asterionellaformosa Hass, on the growth-determining parameters of its fungalparasiteRhizophydium planktonicum Canter emend, was measured,using laboratory cultures of both organisms. The experimentswere earned out at 6°C under a 15:9 h light-dark cycle.At saturating light conditions, the mean zoospore productionof the parasite was 23.4 zoospores sporangium–1, and themean development time of the sporangia was 7 9 days. Light limitationof the host caused a substantial decrease of the zoospore production,while the development time was only slightly reduced. The improvedzoospore production at high light intensities was mainly theresult of incorporation of photosynthetic products generatedby the host after infection. Under limiting light conditions,Asterionella cells were less susceptible to infection withfungal zoospores. No infection at all occurred below 2 µEm–2 s–1, a light intensity that still supportedsome algal growth The maximum infection rate indicated thatchemotactic attraction of the parasite's zoospores by extracellularproducts of the host is involved. The infective lifetime ofthe zoospores of the parasite did not depend on light conditions,and was estimated at 8 days. The measured zoospore productionrates, both under limiting and saturating light conditions,enable the parasite to exceed the specific growth rate of thehost, and thus become epidemic, at sufficiently high host densities.  相似文献   

5.
A model is formulated to investigate the ability of chytridparasites to survive or become epidemic within populations oftheir algal hosts The model is used for an analysis of the effectsof light on the occurrence of Rhizophydium planktonicum Canteremend., a chytrid parasite of the freshwater diatom Asterionellaformosa Hass., using the information on the growth parametersof host and parasite presented in the first part of this article(J. Plankton Res ., 13, 103–117). According to the model,conditions for survival of the parasite are optimal when thehost grows at saturating light conditions. Under limiting lightconditions, Rhizophydium needs higher host densities in orderto maintain itself. The parasite is not able to survive prolongedperiods of severe light limitation of the host Epidemic development,however, turned out to be facilitated by a moderate light limitationof the host. Both light saturation and severe light limitationhamper epidemic development, but in the first case, epidemicdevelopment is still possible at sufficiently high host densities.  相似文献   

6.
Observations, both experimental and microscopic, indicate thatzoospores of Rhizophydium planktonicum Canter emend., can remainalive, but rarely become adherent upon cells of Asterionellaformosa Hassall under conditions of very low light or in completedarkness. The behaviour patterns of zoospores towards host cells underdarkened conditions were compared with those which took placeunder well illuminated conditions leading to the settlementof zoospores on host cells. The differences noted may help toexplain the lack of zoospores found upon inadequately illuminateddiatom cells. Some evidence suggests that young zoospores lack the abilityto adhere to host cells. After the encystment of zoospores uponAsterionella cells in the light, their further growth and developmentcan continue in darkness. Rhizophydium planktonicum Canter emend., Asterionella formosa Hassall, chytrid, diatom, infra-red illumination, zoospore  相似文献   

7.
1. Cell size and volume changed as a function of the type of resource limitation, with nitrogen-limited cells being smaller and less dense and phosphorus-limited cells being larger and more dense than non-limited cells.
2. The major biochemical constituents of the green alga Ankistrodesmus falcatus varied as a function of nitrogen or phosphorus limitation (15% of maximum growth rate) compared to cells growing at their maximum rate. Nitrogen-limited cells had much lower protein content and phosphorus-limited cells had higher carbohydrate and lipid contents than cells growing under no limitation.
3. Phosphorus-limited cells had a higher total lipid content than either nitrogen-limited or non-limited cells, but the lipid class composition was similar.
4. The protein : lipid ratio was lowest (0.38) in the nitrogen-limited cells, intermediate in the phosphorus-limited cells (0.44) and highest in the non-limited control cells (1.14).  相似文献   

8.
Parasite environments are heterogeneous at different levels. The first level of variability is the host itself. The second level represents the external environment for the hosts, to which parasites may be exposed during part of their life cycle. Both levels are expected to affect parasite fitness traits. We disentangle the main and interaction effects of variation in the immediate host environment, here the diatom Asterionella formosa (variables host cell volume and host condition through herbicide pre-exposure) and variation in the external environment (variables host density and acute herbicide exposure) on three fitness traits (infection success, development time and reproductive output) of a chytrid parasite. Herbicide exposure only decreased infection success in a low host density environment. This result reinforces the hypothesis that chytrid zoospores use photosynthesis-dependent chemical cues to locate its host. At high host densities, chemotaxis becomes less relevant due to increasing chance contact rates between host and parasite, thereby following the mass-action principle in epidemiology. Theoretical support for this finding is provided by an agent-based simulation model. The immediate host environment (cell volume) substantially affected parasite reproductive output and also interacted with the external herbicide exposed environment. On the contrary, changes in the immediate host environment through herbicide pre-exposure did not increase infection success, though it had subtle effects on zoospore development time and reproductive output. This study shows that both immediate host and external environment as well as their interaction have significant effects on parasite fitness. Disentangling these effects improves our understanding of the processes underlying parasite spread and disease dynamics.  相似文献   

9.
The methods of isolation and maintenance in dual clone cultureof the chytrid Rhizophydium planktonicum Canter emend, parasiticon Asterionella formosa Hass. from the plankton are described.The ability of a single fungal isolate to infect other clonesof Asterionella, Fragilaria, Tabellaria, Synedra and Cyclotella,as well as dead material was also tested. All the clones of Asterionella proved to be highly susceptibleto infection whereas only in rare instances could a sporangiumbe found which had grown and dehisced on Fragilaria and Synedra.Very few zoospores encysted on Tabellaria and Cyclotella andthose which did died without further growth. There was no evidenceto suggest that the chytrid could complete its life historyon dead material. freshwater phytoplankton, culture, parasitism, host–parasite relationships, chytridiomycetes, Rhizophydium, Zygorhizidium, diatoms, Asterionella, Fragilaria  相似文献   

10.
Abstract. 1. Ovipositional responses of an efficient gregarious ectoparasite ( Aphytis holoxanthus ) to increasing densities of its host (the Florida red scale, Chrysomphalus aonidum , Homoptera: Diaspididae) were studied in a laboratory system.
2. The female parasite may lay one to several eggs at each encounter with a host.
3. As host density increased, the number of eggs laid by the female parasite during the experimental period increased at a decreasing rate. This type of functional response resulted in less parasitism at higher host densities.
4. As host density increased, the number of eggs laid per encounter decreased. This behavioural response partially compensated for the decrease in parasitism.  相似文献   

11.
Abstract. 1. Hosts experiencing frequent variation in density are thought to benefit from allocating more resources to parasite defence when density is high (‘density‐dependent prophylaxis’). However, high density conditions can increase intra‐specific competition and induce physiological stress, hence increasing host susceptibility to infection (‘crowding‐stress hypothesis’). 2. We studied monarch butterflies (Danaus plexippus) and quantified the effects of larval rearing density on susceptibility to the protozoan parasite Ophryocystis elektroscirrha. Larvae were inoculated with parasite spores and reared at three density treatments: low, moderate, and high. We examined the effects of larval density on parasite loads, host survival, development rates, body size, and wing melanism. 3. Results showed an increase in infection probability with greater larval density. Monarchs in the moderate and high density treatments also suffered the greatest negative effects of parasite infection on body size, development rate, and adult longevity. 4. We observed greater body sizes and shorter development times for monarchs reared at moderate densities, and this was true for both unparasitised and parasite‐treated monarchs. We hypothesise that this effect could result from greater larval feeding rates at moderate densities, combined with greater physiological stress at the highest densities. 5. Although monarch larvae are assumed to occur at very low densities in the wild, an analysis of continent‐wide monarch larval abundance data showed that larval densities can reach high levels in year‐round resident populations and during the late phase of the breeding season. Treatment levels used in our experiment captured ecologically‐relevant variation in larval density observed in the wild.  相似文献   

12.
It is well documented that the density of Plasmodium in its vertebrate host modulates the physiological response induced; this in turn regulates parasite survival and transmission. It is less clear that parasite density in the mosquito regulates survival and transmission of this important pathogen. Numerous studies have described conversion rates of Plasmodium from one life stage to the next within the mosquito, yet few have considered that these rates might vary with parasite density. Here we establish infections with defined numbers of the rodent malaria parasite Plasmodium berghei to examine how parasite density at each stage of development (gametocytes; ookinetes; oocysts and sporozoites) influences development to the ensuing stage in Anopheles stephensi, and thus the delivery of infectious sporozoites to the vertebrate host. We show that every developmental transition exhibits strong density dependence, with numbers of the ensuing stages saturating at high density. We further show that when fed ookinetes at very low densities, oocyst development is facilitated by increasing ookinete number (i.e., the efficiency of ookinete-oocyst transformation follows a sigmoid relationship). We discuss how observations on this model system generate important hypotheses for the understanding of malaria biology, and how these might guide the rational analysis of interventions against the transmission of the malaria parasites of humans by their diverse vector species.  相似文献   

13.
Phosphorus (P) is an essential nutrient for growth in consumers. P‐limitation and parasite infection comprise one of the most common stressor pairs consumers confront in nature. We conducted a life‐table study using a Daphnia–microsporidian parasite model, feeding uninfected or infected Daphnia with either P‐sufficient or P‐limited algae, and assessed the impact of the two stressors on life‐history traits of the host. Both infection and P‐limitation negatively affected some life‐history traits tested. However, under P‐limitation, infected animals had higher juvenile growth rate as compared with uninfected animals. All P‐limited individuals died before maturation, regardless of infection. The numbers of spore clusters of the microsporidian parasite did not differ in P‐limited or P‐sufficient hosts. P‐limitation, but not infection, decreased body phosphorus content and ingestion rates of Daphnia tested in separate experiments. As parasite spore production did not suffer even under extreme P‐limitation, our results suggest that parasite was less limited by P than the host. We discuss possible interpretations concerning the stoichiometrical demands of parasite and suggest that our results are explained by parasite‐driven changes in carbon (C) allocation of the hosts. We conclude that the impact of nutrient starvation and parasite infection on consumers depends not only on the stoichiometric demands of host but also those of the parasite.  相似文献   

14.
15.
Abstract Seed production in the endemic New Zealand mistletoe Peraxilla tetrapetala (Loranthaceae) has been shown to be consistently pollen limited, but to date there has been no test of whether the species is also seed limited. If it is not seed limited, then pollen limitation may have no effect on population size. We tested for seed limitation by sowing seeds onto host trees at high and low densities at two sites, and following survival for up to 69 months. Our rationale was that unless there is strong density‐dependent seedling mortality sufficient to negate increases in seed supply, the species would be seed limited. We simultaneously measured pollen limitation at both sites using pollen augmentation. Peraxilla tetrapetala was strongly pollen limited at both sites over 7 years at Ohau (mean Pollen Limitation Index 0.62), and 12 years at Craigieburn (mean PLI 0.44), before and during the seed‐limitation study. There was no significant overall negative effect of density on survival in sown P. tetrapetala seeds over 42–69 months. There was a significant positive effect: seeds were more likely to adhere to branches when sown at high densities. This initial advantage to high‐density seeds was gradually eroded by slightly (but non‐significantly) lower survival rates of adhered seeds at high density. By the end of the study there was no significant difference in overall survival in high and low density plantings. This means that P. tetrapetala was apparently both pollen limited and seed limited at both our sites. Hence, reduced densities of native bird pollinators caused by introduced mammalian carnivores are likely to reduce the density of adult mistletoes in the next generation. However, the generality of this result may be affected by the fact that mistletoes do not have a dense ‘seedling shadow’ under the parent mistletoe.  相似文献   

16.
Phytoplankton infections by fungal parasites in the upper, mixed layer of a mesotrophic northern temperate lake were analysed according to the following parameters: host and parasite species, host population density and prevalence of infection, resting spore formation by the parasite, and the lowest host density at which parasites appeared. The phytoplankton taxa recorded included the Cyanobacteria, Dinomastigota, Chrysophyceae, Bacillariophyceae, Chlorophyceae, Cryptophyceae and Haptophyceae, but infection was never found in the last two classes. The parasites belonged almost exclusively to the monocentric Chytridiomycetes. Fungal epidemics occurred at all times of the year. Parasites appeared at population densities as low as about 1 cell ml−1 in some host species, with infection prevalence sometimes exceeding 80%. The proportion of the total phytoplankton biovolume infected by fungi was usually much <1%, but occasionally reached 10%. Parasitism proved to be highly species-specific, with one parasite species usually infecting only one host species. In the case of Zygorhizidium planktonicum , which infected both Asterionella formosa and Synedra acus , there is evidence that two species-specific formae speciales , each infecting only one of these two host species, are present in the lake.  相似文献   

17.
Despite the fact that most host populations are infected by a community of different parasite species, the majority of empirical studies have focused on the interaction between the host and a single parasite species. Here, we explore the hypothesis that host population dynamics are affected both by single parasite species and by the whole parasite community. We monitored population density and breeding productivity of two populations of willow ptarmigan ( Lagopus lagopus ) in northern Norway for 8 and 11 years, respectively, and sampled eukaryotic endoparasites. We found that increasing abundances of the cestode Hymenolepis microps was associated with increased breeding mortality and reduced annual growth rate of the host population in both areas, and reduced host body mass and body condition in the area where such data were available. In one of the areas, the abundance of the nematode Trichostrongylus tenuis was associated with reductions in host body mass, body condition and breeding mortality and the filaroid nematode Splendidofilaria papillocerca was negatively related to host population growth rates. The parasite community was also negatively related to host fitness parameters, suggesting an additional community effect on host body mass and breeding mortality, although none of the parasites had a significant impact on their own. The prevalence of parasites with very different taxonomical origins tended to covary within years, suggesting that variability in the parasite community was not random, but governed by changes in host susceptibility or environmental conditions that affected exposure to parasites in general. Other variables including climate, plant production and rodent densities were not associated with the recorded demographic changes in the host population.  相似文献   

18.
Vrede K 《Microbial ecology》2005,49(2):245-256
Limitation of bacterioplankton production by nutrients and temperature was investigated in eight temperate lakes in summer. Six of the lakes were resampled in autumn. The lakes differ in nutrient content, water color, and concentration of dissolved organic carbon. Nutrients (phosphorus, nitrogen, and organic carbon) were added alone and in all possible combinations to filtered lake water inoculated with bacteria from the lake. After incubation for 36–40 h at in situ temperatures (ranging from 7 to 20°C), the response in bacterioplankton production was determined. The effect of increased temperature on bacterioplankton growth was also tested. Bacterioplankton production was often limited by phosphorus alone, organic carbon alone, or the two in combination. Phosphorus limitation of bacterioplankton production was more common in the summer, whereas limitation by organic carbon was more frequently observed in the autumn. There was a close balance between limitation by phosphorus and organic carbon in the epilimnion in the summer. In the hypolimnion in the summer, bacterioplankton growth was primarily phosphorus-limited. The effect of phosphorus additions decreased with increasing phosphorus concentrations in the lakes. However, there were no correlations between the effect of added organic carbon and water color, dissolved organic carbon concentration, or phosphorus concentration. When temperature was low (in the hypolimnion in the summer, and throughout the water column in the autumn) temperature also limited bacterioplankton production. Thus, temperature and inorganic nutrients or organic compounds can limit bacterioplankton growth both alone and simultaneously. However, at low temperatures, temperature is the most important factor influencing bacterioplankton growth.  相似文献   

19.
In food-web studies, parasites are often ignored owing to their insignificant biomass. We provide evidence that parasites may affect trophic transfer in aquatic food webs. Many phytoplankton species are susceptible to parasitic fungi (chytrids). Chytrid infections of diatoms in lakes may reach epidemic proportions during diatom spring blooms, so that numerous free-swimming fungal zoospores (2-3 microm in diameter) are produced. Analysis shows that these zoospores are rich in polyunsaturated fatty acids and sterols (particularly cholesterol), which indicates that they provide excellent food for zooplankters such as Daphnia. In life-table experiments using the large diatom Asterionella formosa as food, Daphnia growth increased significantly in treatments where a parasite was present. By grazing on the zoospores, Daphnia acquired important supplementary nutrients and were able to grow. When large inedible algae are infected by parasites, nutrients within the algal cells are consumed by these chytrids, some of which, in turn, are grazed by Daphnia. Thus, chytrids transfer energy and nutrients from their hosts to zooplankton. This study suggests that parasitic fungi alter trophic relationships in freshwater ecosystems and may be the important components in shaping the community and the food-web dynamics of lakes.  相似文献   

20.

Background

Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally.

Methodology/Principal Findings

Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling.

Conclusions/Significance

These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号