首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of the epidermal cells which migrate over the wound surface of the amputated limb of the adult newt, Notophthalmus viridescens, was observed with transmission (TEM) and scanning (SEM) electron microscopy. In order to aid in the visualization of polyanionic surface materials on the wound epithelium and wound surface with TEM, the basic dye, ruthenium red, was introduced into the fixatives and buffer. Control limbs were processed without ruthenium red. Shortly after amputation, basal cells at the wound margin possessed elongated, flattened profiles with long pseudopodial projections (lamellipodia and filopodia) that appeared to make contact with the fibrin exudate covering the stump tissues. Epidermal cells proximal to the site of amputation were also in a state of mobilization. Large intercellular spaces and a reduction in the number of desmosomes were observed in the migrating cells. Epidermal cell nuclei became characteristically euchromatic with well-developed nucleoli. Microfilaments were seen within the cytoplasm, extending toward the plasma membrane of cellular processes. Phagocytosed material was also present in the migrating cells. By approximately 9 hours post-amputation, wound closure was complete, and the wound epithelium consisted of three to four cell layers of a non-cornified epidermis. Generally, the amount of extracellular material present on the surface and in the enlarged intercellular spaces of migrating epidermal cells remained the same throughout the period of wound closure. A layer of polyanionic material was observed consistently over the fibrin meshwork covering the wound surface with TEM.  相似文献   

2.
Epidermal cell migration during wound healing in Dugesia lugubris   总被引:1,自引:0,他引:1  
The epidermal cells that migrate over the surface during the wound closure stage of head regeneration in Dugesia lugubris s.l. were examined by scanning electron microscopy. The effect of cytochalasin B on epidermal cell migration was also examined. During the first few hours after decapitation epidermal cells at the edges of the wound showed significant changes of shape related to the process of migration that was accomplished approximately 10 h after wounding. Flattening of the marginal cells was associated with active epidermal spreading throughout the healing period. Suitable support for migrating cells appeared to be a rhabditic network attached to the wound tissue. Epidermal cell migration was inhibited by cytochalasin B. These results demonstrate that the basis for cell movement in planarians is similar to that of many other systems.  相似文献   

3.
A morphological study of in vitro wound healing has been performed by light, transmission and scanning electron microscopy in dorsal thoraco-lumbar skin of 7-day chick embryos. A circular wound, 750 microns in diameter, was punched out of dorsal skin, removing epidermis and the underlying dense dermis. Wound closure was completed within 96 to 120 hours. Feather bud development was not observed at the wound site. The epidermis began to migrate some 24 h after the wounding; the migration of peridermal cells preceded that of basal epidermal cells by some 12 hours. Mechanisms of the epidermal migration were similar to those observed in situ during wound healing of the integument in 5-day chick embryos (THEVENET, 1981), Superficial epithelization of bare dermis occurred as soon as 12 h after the injury. Cytoplasm of dermal cells exhibited many microtubules and a dilated rough endoplasmic reticulum. During the first 48 h, the epidermal cells established direct contacts and zones of close parallel apposition with epithelized dermal cell processes. The basement membrane lamina densa was maintained at the edges of the wound without retraction or ruffling. It was reconstituted concomitantly with the epidermal migration within 72 h. Cytoplasm of migratory epidermal and epithelized dermal cells exhibited many cytoskeleton structures.  相似文献   

4.
Pieces of coverslip glass coated with various proteins were implanted under one edge of a fresh skin wound on adult newt hind limbs so that the implant served as wound bed for migrating epidermal cells as they attempted to form a wound epithelium. Despite the fact that concanavalin A (Con A) receptors could be demonstrated on newt epidermal cells with fluorescein isothiocyanate (FITC)-conjugated lectin, Con A-coated implants supported practically no migration, an even poorer response than the modest amount of migration that occurred on uncoated glass. Coomassie blue staining verified that the lectin formed a complete film over the glass, and peroxidase binding assays showed that even after several hours in the wound, the Con A binding sites for mannose were still available. Migration on fibrinogen-coated glass (a good migration substrate) was not affected by placing the implants next to Con A-coated implants. Thus, the failure to migrate on Con A cannot be explained by soluble Con A effects from lectin leaching off the implants. These data suggest that linkages between cell surface mannose and the substrate are not part of the strategy by which newt epidermal cells migrate.  相似文献   

5.
Following opercular amputation in Pomatoceros lamarckii Quatrefages, wound healing is initiated from a predetermined point on the peduncle. The events of abscission, cell migration and cuticle deposition during wound healing have been studied by light and electron microscopy. Abscission occurs at a predetermined point on the peduncle indicated by specialized epidermal cells, the easy break-point cells (EBP). Following detachment of tissues distal to the EBP cells, the resultant wound is plugged by a knot of coelomocytes which provide a substratum over which epidermal cells migrate to seal and restore the epidermis. During their migration, the epidermal cells undergo differentiation and deposit a new cuticle. Cuticle formation is initiated by the deposition of a finely filamentous matrix. The fine filaments subsequently coalesce to form thicker fibrils which become aggregated into layers of orthogonally-arranged fibril bundles. The mechanisms involved in abscission, cell migration and cuticle deposition during wound healing of the opercular filament are discussed.  相似文献   

6.
It has been reported that vitamin A palmitate induces the production of cilia on the epidermal cells of the regenerating axolotl limb, and the formation of crevices in the epidermal surface. The aim of the present investigation was to reexamine under well defined conditions the potential of retinoids to evoke the above described metaplastic changes. In order to achieve our purpose we administered axolotls with retinoic acid for 2, 4, 6, 8, and 10 days after limb amputation. The young regenerates were inspected by scanning electron microscopy (SEM). The data obtained showed that the external layer of the wound epithelium and of the stump epidermis as well was quite normal without any sign of cilia formation. In some cases, crevices were observed even in control animals.  相似文献   

7.
Pieces of coverslip glass, polycarbonate filters, or coverslip plastic, coated with fibrinogen or type I collagen, were implanted under one edge of a fresh skin wound on adult newt hind limbs so that the implant served as wound bed for migrating epidermal cells as they attempted to form a wound epithelium. Migratory events were then analyzed by phase contrast and electron microscopy. Phase-contrast microscopy revealed two types of lamellipodia on leading edge cells: one which was attached broadly to the cell body and one attached by a long, thin stalk. Stalkless forms were by far the most common type and we believe they provide the motive force for cell movement. Stalked-forms often moved at distinct angles to the direction of sheet movement, suggesting that they may be sensory appendages. Phase photographs of the leading edge of migrating sheet 4 hours and 8 hours after implantation showed that all cells that were on the leading edge at 4 hours continued to advance for the next 4 hours, demonstrating clearly that under these circumstances the distalmost cells do not become immobile upon contact with the substrate as others have suggested. TEM revealed that migrating sheets were modified monolayers and that regardless of proximodistal location in the sheet, and even in the intact skin adjoining a wound, each epidermal cell adjacent to the substrate puts forth a lamellipodium which underlaps the cell in front. This and the behavior of sheets as they were teased or pulled from the implant suggest strongly that all basal cells contribute to movement of the sheet by interacting with the substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Leaf surfaces of non-tissue-cultured, vitrified and non-vitrified plantlets of Gypsophila paniculata (Babies Breath) were examined using an environmental scanning electron microscope. Non-tissue-cultured plants had a complete epidermal surface, recessed stomata and wax present on the leaf surface. The surface of tissue-cultured plantlets appeared similar to non-tissue-cultured plants excepting stomata were slightly protruding and less wax appeared to be present. In both non-tissue-cultured and tissue-cultured plants stomata were found both opened and closed and were observed closing. In contrast vitrified plantlets had abnormal, malformed stomata which appeared non-functional. The ventral surfaces of leaves seemed more normal than the dorsal, this may be due to the former receiving more light. Additionally, discontinuities were found in the epidermis. Often epidermal holes were found in association with stomatal apertures. It is suggested that the main cause of desiccation of vitrified G. paniculata plantlets ex vitro is due to loss of water from the discontinuity in epidermis and not because of non-functional stomata. Liquid water could be seen through the epidermal holes indicating that at least some of the extra water in vitrified plantlets is contained in the intercellular spaces.Abbreviations ESEM Environmental scanning election microscope - IAA Indole acetic acid - NTC Non-tissue-cultured - TC Tissue-cultured - V vitrified  相似文献   

9.
Summary Epidermal wound healing in regeneratingDugesia tigrina (Planaria) has been studied using scanning electron microscopy (SEM). The normal epidermal surface and its differentiations have been descrebed. Observations on living material reveal the highly dynamic state of the wound in invididual animals and its more or less continously changing size due to the state of activity of the animals. These observations show good agreement with the SEM studies, which allow a clear delineation of cellular details of the wound, the wound margins and the apposing epidermal regions. These details are described. The over-all picture of planarian wound healing that emerges is briefly as follows: Epithelization is characterized by absence of proliferation from the old intact epidermis. Variable contraction of smooth muscle cells reduces the wound size to a certain extent. Simultaneously with this and also during a longer period epidermal cells adjacent to the wound are extending and some become highly attenuated. These two processes together are only to a certain degree effective in wound closure because of a definite epidermal cell deficit which is reflected in the emergence of an epidermal wound edge reflecting the maximal contribution of these two processes to an attempt to close the wound. Complete epithelization is effected by the operation of a third mechanism: Recruitment of cell through flow of subjacent blastemal cells (including rhabdite-forming cells) along the wound border; these cells subsequently occupy a peripheral position in the wound. This process is supplemented by cell immigration and insertion into the adjacent old epidermis and in the wound cell sheet. Rhabdite-forming cells contribute predominantly to this process. Eventually integration between old epidermal cells and the newly recruited cells which differentiate into epidermal cells results in final epithelization. Complete wound healing is based on interactions between the epidermal cell system and the regenerating subepidermal membrane-connective tissue filament-muscle cell system.  相似文献   

10.
Using transmission electron microscopy and serial sections with light-microscopic autoradiography, I have investigated the ultrastructure of wound healing, the distribution of cells preparing for proliferation, and the fates of cells labelled with exogenous tritiated thymidine ([3H]T) in Microstomum lineare undergoing wound healing and regeneration. Immediately after decapitation the open wound was reduced to a minimum by strong contraction of circular muscle fibers. The wound epidermis was cellular, consisting of thin parts of epidermal cells from the epidermis around the wound. These epidermal cells maintained close adhesive contact with one another through zonulae adherentes and septate junctions. No proliferating cells were found in the old epidermis. The only cells taking up [3H]T were mesenchymal and gastrodermal neoblasts which proliferated and migrated towards the surface. The final epidermis was formed by conjunction of the wound epidermis and newly differentiated epidermal cells. Regeneration in Microstomum, in contrast to that of planarians, occurs mainly by morphallaxis, without the formation of a regeneration blastema, but also through continuous cell proliferation, migration, and differentiation.  相似文献   

11.
We previously showed that bisectional wounds made in Xenopus laevis embryos at the primary eye vesicle stage were rapidly closed. In this study, microscopic analyses, including scanning electron microscopy, on the morphology of the epidermis were conducted during wound closure in the half embryos. Bright fluorescence of Texas red-phalloidin showing actin filaments started to be visualized at the cut edge 10 min after wounding. It increased with time, forming a distinguished, though discontinuous, bundle along the wound margin. The wound closure was completely inhibited by 20 microm cytochalasin B, and almost completely by 50 mm 2,3-butanedione 2-monoxime, an inhibitor to myosin ATPase activity. Scanning electron microscopy revealed that the outer epidermal cells became extensively elongated in the radial direction, and the contour of the closing wound edge did not become smoother but remained ragged. Thus, a representative embryonic type of wound closure may be driven in Xenopus embryos by a complex mechanism, involving not only the actin 'purse-string' but also an inward movement of individual cells. Anyhow, the wound closure is a movement of the epidermal sheet maintaining cell-cell contact, and not involving locomotion of single cells separated from the wound edge.  相似文献   

12.
Summary Ampullary organs were found in the epidermis of the paddle-fish Sorubim lima; they are distributed all over the skin surface of the fish but are particularly densely grouped in the head region and on the dorsal surface of the paddle. Histological and electron microscopical observations show that their structure is similar to the type of cutaneous ampullary organs characteristic of other Siluroidea. Composed of a relatively large mucus-filled ampulla, the organ possesses a short and narrow canal which leads to the outer epidermal surface. The wall of the ampulla is formed of several layers of flat epidermal cells. In general four sensory cells, each one surrounded by supporting cells, compose the sensory epithelium at the bottom of the ampulla. The inner surface of the sensory cells in contact with the ampullary mucus bears only microvilli. The contact between the nerve endings and the sensory cells show the characteristic structure of an afferent neuro-sensory junction. Two ampullae are innervated in some cases by the same afferent nerve fibre.The author expresses her gratitude to Dr. Szabo for his scientific advice during her stay in Gif sur Yvette  相似文献   

13.
During the early phase of Dictyostelium discoideum development, cells undergo chemotactic migration to form tight aggregates. A developmentally regulated surface glycoprotein of Mr 80,000 (gp80) has been implicated in mediating the EDTA-resistant type of cell cohesion at this stage. We have used a monoclonal antibody directed against gp80 to study the topographical distribution of gp80 on the cell surface. Indirect immunofluorescence studies showed that gp80 was primarily localized on the cell surface, with a higher concentration at contact areas. Immunoelectron microscopy was carried out by indirect labeling using protein A-gold, and a nonrandom distribution of gp80 was revealed. In addition to contact regions, gold particles were found preferentially localized on filopodia. Quantitative analysis using transmission electron microscopy (TEM) showed that approximately 60% more gold particles were localized in contact regions in comparison with the noncontact regions, and the filopodial surfaces had a twofold higher gold density. Both TEM and scanning electron microscopy showed that contact areas were enriched in filopodial structures. Filopodia often appeared to adhere to either smooth surfaces or similar filopodial structures of an adjacent cell. These observations suggest that the formation of stable cell-cell contacts involves at least four sequential steps in which filopodia and gp80 probably play an important role in the initial stages of recognition and cohesion among cells.  相似文献   

14.
Light microscopy, transmission electron microscopy, and scanning electron microscopy were used to visualize the extracellular slime of Proteus mirabilis swarm cells. Slime was observed with phase-contrast microscopy after fixation in hot sulfuric acid-sodium borate. Ruthenium red was used to stain slime for transmission electron microscopy. Copious quantities of extracellular slime were observed surrounding swarm cells; the slime appeared to provide a matrix through which the cells could migrate. Swarm cells were always found embedded in slime. These observations support the argument that swarming of P. mirabilis is associated with the production of large quantities of extracellular slime. Examination of nonswarming mutants of P. mirabilis revealed that a number of morphological changes, including cell elongation and increased flagellum synthesis, were required for swarm cell migration. It is still unclear whether extracellular slime production also is required for migration.  相似文献   

15.
Résumé Avant d'entrer en contact, les surfaces de fusion des processus palatins subissent des modifications. Certaines cellules épithéliales superficielles deviennent turgescentes, alors que d'autres conservent un aspect dense et aplati, elles se lysent et éclatent. Des noyaux semblables à ceux des assises profondes se retrouvent en surface, paraissant migrer vers le bourgeon antagoniste. Des projections filamenteuses apparaissent, quelques unes établissant un contact avec l'épithélium opposé, d'autres restant seulement sous forme d'expansion. Ces observations sont concordantes en microscopie photonique et en microscopie électronique à balayage.
Modification of the medial epithelium of the palatal shelves of mice at the prefusion stage. A light and scanning electron microscopy study
Summary The fusion surfaces of the palatal processes are modified before coming into contact. Several superficial epithelial cells become hypertrophied, undergo lysis and burst, whereas others remain flattened and densely stained. Nuclei, similar to those localized in deeper layers are found on the surface and seem to migrate towards the opposite process. Filamentous projections appear and some establish a linkage with the opposite epithelium, whereas others expand freely from the surface. Light microscope observations agree with scanning electron microscopy findings.
  相似文献   

16.
Wound repair in planarians is mainly characterized by two cell-migratory events involving the epidermis adjacent to the wound and its basement membrane. The first event is the migration of epidermal cells to cover the wound surface; the second one is the migration of newly differentiating replacement epidermal cells from the parenchyma to the epidermis. In addition to these events, migration of fixed parenchymal cells is observed during wound healing. All migrating cells were characterized by the presence of actin, as shown by the results obtained by means of indirect immunolocalization with fluorescent and electron microscopy. Migrating cells were heavily labeled with gold particles, which clustered at the level of cell-matrix and cell-cell contacts.  相似文献   

17.
Membrane topography and organization of cortical cytoskeletal elements and organelles during early embryogenesis of the mouse have been studied by transmission and scanning electron microscopy with improved cellular preservation. At the four- and early eight-cell stages, blastomeres are round, and scanning electron microscopy shows a uniform distribution of microvilli over the cell surface. At the onset of morphogenesis, a reorganization of the blastomere surface is observed in which microvilli becomes restricted to an apical region and the basal zone of intercellular contact. As the blastomeres spread on each other during compaction, many microvilli remain in the basal region of imminent cell-cell contacts, but few are present where the cells have completed spreading on each other. Microvilli on the surface of these embryos contain linear arrays of microfilaments with lateral cross bridges. Microtubules and mitochondria become localized beneath the apposed cell membranes during compaction. Arrays of cortical microtubules are aligned parallel to regions of apposed membranes. During cytokinesis, microtubules become redistributed in the region of the mitotic spindle, and fewer microvilli are present on most of the cell surface. The cell surface and cortical changes initiated during compaction are the first manifestations of cell polarity in embryogenesis. These and previous findings are interpreted as evidence that cell surface changes associated with trophoblast development appear as early as the eight-cell stage. Our observations suggest that morphogenesis involves the activation of a developmental program which coordinately controls cortical cytoplasmic and cell surface organization.  相似文献   

18.
The cells surrounding a wound in the integument of Rhodnius adults show an increase in RNA content, cytochrome oxidase and esterase activity. An excision in the integument is filled by blood which coagulates and is tanned into an insoluble membrane. The basement membrane of the adjoining epidermis acts as a self-sealing membrane and contracts to cover the excision. The epidermis is attached to the cuticle by the subcuticular layer which it resorbs and by pore canal filaments which are left behind as it migrates. The epidermis migrates as a sheet in contact with the cuticle then with the coagulated blood and basement membrane which cover the excision. Blood cells migrate individually into an excision and do not adhere to a surface in the process. Microtubules cannot be identified with movement. Both epidermal and blood cells remove the cells killed by wounding as evidenced by the appearance of coated vesicles and phagocytic bodies in both cell types. The reconstituted integument consists of a surface membrane in which the layers of the epicuticle are not distinguishable, a nonlamellate cuticle secreted by an epidermis which also appears to secrete the new basement membrane.  相似文献   

19.
The discovery of long-lived epithelial stem cells in the bulge region of the hair follicle led to the hypothesis that epidermal renewal and epidermal repair after wounding both depend on these cells. To determine whether bulge cells are necessary for epidermal renewal, here we have ablated these cells by targeting them with a suicide gene encoding herpes simplex virus thymidine kinase (HSV-TK) using a Keratin 1-15 (Krt1-15) promoter. We show that ablation leads to complete loss of hair follicles but survival of the epidermis. Through fate-mapping experiments, we find that stem cells in the hair follicle bulge do not normally contribute cells to the epidermis which is organized into epidermal proliferative units, as previously predicted. After epidermal injury, however, cells from the bulge are recruited into the epidermis and migrate in a linear manner toward the center of the wound, ultimately forming a marked radial pattern. Notably, although the bulge-derived cells acquire an epidermal phenotype, most are eliminated from the epidermis over several weeks, indicating that bulge stem cells respond rapidly to epidermal wounding by generating short-lived 'transient amplifying' cells responsible for acute wound repair. Our findings have implications for both gene therapy and developing treatments for wounds because it will be necessary to consider epidermal and hair follicle stem cells as distinct populations.  相似文献   

20.
Growth pattern of Rickettsia tsutsugamushi in irradiated L cells.   总被引:1,自引:1,他引:0       下载免费PDF全文
Irradiated L cells infected with Rickettsia tsutsugamushi were studied under the electron microscope to define the morphological growth pattern of the organism. For 2 days after inoculation, no rickettsiae were found either extra- or intracellularly; after 2 days multiple rickettsiae appeared within the host cells without morphological evidence of their entry. These observations showed that the rickettsiae within the cell were assembled in situ by segregation of portions of the granular cytoplasm and subsequent internal differentiation and surface membrane assembly of the segregated bodies. The protoplasmic (P) bodies, which seemed to be formed by shedding infected-cell granular cytoplasm, consistently appeared on the surface and within the phagosomes of the host cells. Rickettsiae were occasionally seen entering host cells in the later phase of infection; these were apparently the ones assembled within the P bodies. This suggested that the P bodies, and not the rickettsiae, were the major infectious particles that transmitted the rickettsial genetic substance among the host cells. On the basis of the present morphological observations, viral-type multiplication for R. tsutsugamushi is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号