首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Studies of biodiversity–ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR ), functional diversity (FD ), community‐weighted mean trait value (CWM ), and tree identity. The site was a 4‐year‐old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community‐level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA ) analysis and the MicroResp? system, respectively. The relationship between tree species richness and glucose‐induced respiration (GIR ), basal respiration (BR ), metabolic quotient (qCO 2) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR ]), with higher biomass (glucose‐induced respiration [GIR ]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA ) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR . In general, the CWM of traits had stronger effects than did FD , suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD . Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR ) and identity (species and functional identity—leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life‐history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR .  相似文献   

2.
Ecosystem nutrient use efficiency–the ratio of net primary productivity to soil nutrient supply–is an integrative measure of ecosystem functioning. High productivity and nutrient retention in natural systems are frequently attributed to high species diversity, even though some single-species systems can be highly productive and effective at resource capture. We investigated the effects of both individual species and life-form diversity on ecosystem nutrient use efficiency using model tropical ecosystems comprised of monocultures of three tree species and polycultures in which each of the tree species was coplanted with species of two additional life forms. Tree species significantly influenced nutrient use efficiency by whole ecosystems in monocultures; however, in polycultures, the additional life forms interacted with the influence exerted by the dominant tree. Furthermore, the presence of the additional life forms significantly increased nutrient uptake and uptake efficiency, but in only two of the three systems and 2 of the 4 years of the study period. These results indicate that the effect of life-form diversity on ecosystem functioning is not constant and that there may be temporal shifts in the influence exerted by different components of the community. Furthermore, although species (and life forms) exerted considerable influence on ecosystem nutrient use efficiency, this efficiency was most closely related to soil nutrient availability. These findings demonstrate that ecosystem nutrient use efficiency is an outcome not only of the characteristics of the species or life forms that comprise the system but also of factors that affect soil nutrient supply. The results argue against the simple upward scaling of nutrient use efficiency from leaves and plants to ecosystems. Received 29 March 2000; accepted 27 April 2001.  相似文献   

3.
Leaf and soil nutrient levels interact with and may each influence the other. We hypothesize that to the extent soil fertility influences the nutritional state of trees, soil fertility should correlate with summer leaf nutrient levels, whereas to the extent that trees influence soil nutrient levels, the quality of leaf litterfall should correlate with soil fertility. We examined these correlations for five sympatric oak species (genus Quercus) in central coastal California. Soil fertility, including both nitrogen and especially phosphorus, correlated significantly with summer leaf nutrient levels. In contrast, phosphorus, but not nitrogen, in the leaf litterfall correlated positively with soil nutrients. These results suggest that soil nitrogen and phosphorus influence tree nutrient levels and that leaf phosphorus, but not leaf nitrogen, influence soil fertility under the trees. Feedback between the soil and the tree for phosphorus, but not nitrogen, is apparently significant and caused by species-specific differences in leaf quality and not by litterfall quality differences within a species. We also compared functional differences between the evergreen and deciduous oak species at our study site. There were no differences in soil nitrogen and only small differences for soil phosphorus between the phenological types. Differences in leaf nutrient concentration were much more pronounced, with the evergreen species having substantially lower levels of both nitrogen and phosphorus. Evergreen species conserved more phosphorus, but not more nitrogen, than the deciduous species, but there was no consistent relationship between retranslocation and either soil nitrogen or phosphorus. These results do not support the hypothesis that evergreenness is an adaptation to low soil fertility in this system.  相似文献   

4.
Essarioui  Adil  Kistler  Harold C.  Kinkel  Linda L. 《Plant and Soil》2016,409(1-2):329-343
Background an aims

Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces.

Methods

We examined the effects of plant host and plant species richness on nutrient use of Streptomyces isolated from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Growth on 95 carbon sources was assessed over 5d.

Results

Cumulative growth was significantly greater for polyculture vs. monoculture isolates, and for Lc vs. Ag isolates. Isolates from monocultures, but not polycultures, exhibited a drop in growth rates between 24 h and 72 h post-inoculation, suggesting resource allocation to non-growth functions. Isolates from high-carbon (polyculture) or high-nitrogen (Lc) soils had larger niche widths than isolates from low-C (monocultures) or low-N (Ag) soils. Sympatric isolates from polycultures were significantly more differentiated from one another in preferred nutrients for growth than sympatric isolates from monocultures.

Conclusions

These results suggest that Streptomyces populations respond to selection imposed by plant host and plant community richness and that populations from polyculture but not from monoculture, mediate resource competition via niche differentiation.

  相似文献   

5.
Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3-) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha-1 in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3- concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.  相似文献   

6.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   

7.

Background and Aims

Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species.

Methods

Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g).

Key Results

Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits.

Conclusions

Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant allometry could arise due to selection for different types of biomass allocation in response to different environmental stressors (e.g. fire vs. herbivory).  相似文献   

8.
广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式   总被引:1,自引:0,他引:1  
土壤养分供给性大小是否影响植物氮和磷再吸收效率仍存在争议。调查了广西猫儿山不同海拔常绿和落叶树种成熟和衰老叶片的氮和磷含量,探讨营养再吸收是否受到叶片习性和海拔的影响。所有树种氮和磷再吸收效率的平均值分别为56.5%和52.1%。常绿树种比落叶树种有显著较高的氮再吸收效率(P0.001)和磷再吸收效率(P0.01),这与前者有较低的衰老叶片氮和磷含量密切相关。随着海拔的上升,氮再吸收效率显著下降(P0.01),磷再吸收效率显著提高(P0.05)。氮再吸收效率与土壤氮:磷比(r=-0.41,P0.05)和成熟叶片氮:磷比(r=-0.37,P0.05)负相关,磷再吸收效率与土壤氮:磷比(r=0.44,P0.05)和成熟叶片氮:磷比(r=0.47,P0.01)正相关,表明了树种对低海拔氮限制的适应逐渐转变为对高海拔磷限制的适应。此外,氮再吸收效率与年均温正相关(r=0.43,P0.05)而磷再吸收效率与年均温负相关(r=-0.45,P0.01),这表明气温也是调节树木营养再吸收格局的重要影响因素。不同海拔树种氮和磷再吸收模式的差异可能是引起广西猫儿山常绿树种沿海拔形成双峰分布的原因之一。  相似文献   

9.
重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征   总被引:5,自引:0,他引:5  
刘宏伟  刘文丹  王微  柴捷  陶建平 《生态学报》2015,35(12):4071-4080
以重庆石灰岩地区15种常绿木本植物和14种落叶木本植物为研究对象,对两种生活型植物叶片衰老前后叶干物质含量(LDMC)、比叶面积(SLA)和叶片厚度(LT)进行了比较,并采用不同的计算方法(单位质量叶片养分含量、单位面积叶片养分含量)分析了两类植物叶片衰老前后养分含量及再吸收特征,最后对养分再吸收效率与其他叶性状因子之间的关系进行了相关分析。结果表明:常绿植物成熟叶LDMC、LT及衰老叶LT显著低于落叶植物,落叶植物成熟叶和衰老叶SLA均显著高于常绿植物(P0.05);基于单位质量叶片计算的养分含量,常绿植物成熟和衰老叶N、P量均低于落叶植物,而基于单位面积叶片计算的N、P含量则表现出相反的趋势;基于不同方法计算的N、P再吸收效率差异不明显,其中常绿植物基于单位质量叶片养分含量计算的N、P平均再吸收效率为39.42%、43.79%,落叶植物的为24.08%、33.59%;常绿和落叶植物N、P再吸收效率与LDMC、SLA、LT和成熟叶N、P含量之间没有显著相关性,但与衰老叶养分含量存在显著负相关(P0.05)。研究发现,无论是常绿植物还是落叶植物,衰老叶N、P含量均较低,表明石灰岩地区植物具有较高的养分再吸收程度。  相似文献   

10.
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.  相似文献   

11.
 本文通过10个地区61个样地资料分析,研究了中亚热带东部常绿阔叶林群落多样性特征及其随纬度、海拔梯度的变化。结果表明,中亚热带东部常绿阔叶林群落丰富度为49±17种(样地面积400m2),各层次的多样性表现为灌木层(包括幼树与幼苗)>乔木层>草本层。常绿阔叶林各类型间的差异远比落叶阔叶林与多样性较低的常绿阔叶林之间的差异大。各层次中变化幅度从大到小的顺序为:草本层>乔木层>灌木层。在所研究地区常绿阔叶林的群落多样性没有表现出明显的随纬度梯度和海拔梯度的变化规律。  相似文献   

12.
Plant species effects on soil nutrient availability are relatively well documented, but the effects of species differences in litter chemistry on soil carbon cycling are less well understood, especially in the species-rich tropics. In many wet tropical forest ecosystems, leaching of dissolved organic matter (DOM) from the litter layer accounts for a significant proportion of litter mass loss during decomposition. Here we investigated how tree species differences in soluble dissolved organic C (DOC) and nutrients affected soil CO2 fluxes in laboratory incubations. We leached DOM from freshly fallen litter of six canopy tree species collected from a tropical rain forest in Costa Rica and measured C-mineralization. We found significant differences in litter solubility and nutrient availability. Following DOM additions to soil, rates of heterotrophic respiration varied by as much as an order of magnitude between species, and overall differences in total soil CO2 efflux varied by more than four-fold. Variation in the carbon: phosphorus ratio accounted for 51% of the variation in total CO2 flux between species. These results suggest that tropical tree species composition may influence soil C storage and mineralization via inter-specific variation in plant litter chemistry.  相似文献   

13.
The effects of producer diversity on predators have received little attention in arboreal plant communities, particularly in the tropics. This is particularly true in the case of tree diversity effects on web‐building spiders, one of the most important groups of invertebrate predators in terrestrial plant communities. We evaluated the effects of tree species diversity on the community of weaver spiders associated with big‐leaf mahogany (Swietenia macrophylla) in 19, 21 × 21‐m plots (64 plants/plot) of a tropical forest plantation which were either mahogany monocultures (12 plots) or polycultures (seven plots) that included mahogany and three other tree species. We conducted two surveys of weaver spiders on mahogany trees to evaluate the effects of tree diversity on spider abundance, species richness, diversity, and species composition associated with mahogany. Our results indicated that tree species mixtures exhibited significantly greater spider abundance, species richness, and diversity, as well as differences in spider species composition relative to monocultures. These results could be due to species polycultures providing a broader range of microhabitat conditions favoring spider species with different habitat requirements, a greater availability of web‐building sites, or due to increased diversity or abundance of prey. Accordingly, these results emphasize the importance of mixed forest plantations for boosting predator abundance and diversity and potentially enhancing herbivore pest suppression. Future work is necessary to determine the specific mechanisms underlying these patterns as well as the top‐down effects of increased spider abundance and species richness on herbivore abundance and damage.  相似文献   

14.
We measured concentrations of soil nutrients (0–15 and 30–35 cm depths) before and after the dry season in control and dry-season irrigated plots of mature tropical moist forest on Barro Colorado Island (BCI) in central Panama to determine how soil moisture affects availability of plant nutrients. Dry-season irrigation (January through April in 1986, 1987, and 1988) enhanced gravimetric soil water contents to wet-season levels (ca. 400 g kg–1 but did not cause leaching beyond 0.8 m depth in the soil. Irrigation increased concentrations of exchangeable base cations (Ca2+, Mg2+, K+, Na+), but it had little effect on concentrations of inorganic N (NH4 +C, NO3 and S (SO4 2–). These BCI soils had particularly low concentrations of extractable P especially at the end of the dry season in April, and concentrations increased in response to irrigation and the onset of the rainy season. We also measured the response of soil processes (nitrification and S mineralization) to irrigation and found that they responded positively to increased soil moisture in laboratory incubations, but irrigation had little effect on rates in the field. Other processes (plant uptake, soil organic matter dynamics) must compensate in the field and keep soil nutrient concentrations at relatively low levels.  相似文献   

15.
Leaf litter nutrients play a key role in nutrient cycling in forest ecosystems, yet our current knowledge of the ways in which climate controls leaf litter nutrients remains uncertain, especially for broad-leaved tree species in China. We performed a meta-analysis of geographic patterns of leaf litter nutrients of Chinese broad-leaved tree species in relation to climatic variables and leaf habit (as a discrete classification of tree species). We found that mean leaf litter carbon (C), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) were 458.36, 10.11, 0.72, 6.37, 14.22 and 2.59 mg?1 g, respectively. Leaf litter nutrients did not diverge between leaf habits where they coexisted. These leaf litter nutrients displayed significant latitudinal trends, partly driven by climatic factors and a shift in leaf habit. Mean annual precipitation explained the largest amount of total variation in leaf litter C, N, P and K, and mean annual temperature was the most important predictor for leaf litter Mg, whereas leaf habit was the largest contributor to total variation in leaf litter Ca. We further found that the relationships between climate and leaf litter nutrients were distinguishable for evergreen and deciduous broad-leaved tree species. Collectively, our study differed from previous studies that evaluated leaf litter nutrients and only focused on N and P, and substantiated that leaf litter nutrients in forest ecosystems were affected by climate and leaf habit, but the strengths of the influences of these factors were strongly contingent on leaf litter nutrient identity. Therefore, alteration of climate would directly and indirectly (via a shift in species composition) affect latitudinal patterns of leaf litter nutrients and thus the associated nutrient flux and ecosystem functioning. Our study also underlined the need to include multiple nutrients to explore the influence of climate on leaf litter nutrient stoichiometry.  相似文献   

16.
In tropical dry forests, spatial heterogeneity in soil water availability is thought to determine interspecific differences in key components of resource use strategies, such as leaf phenology and xylem function. To understand the environmental drivers of variation in leaf phenology and xylem function, we explored the relation of soil water potential to topographic metrics derived from a digital elevation model. Subsequently, we compared nine xylem hydraulic, mechanical and storage traits in 18 species in three phenological classes (readily deciduous, tardily deciduous, and evergreen) in the dry tropical forest of Chamela, Mexico. Soil water potential was negatively correlated with elevation, insolation and water flow accumulation. Evergreen species characterized low-elevation moist sites, whereas deciduous species dominated hills and dry sites. Overall, evergreen species had lower xylem specific conductivity than deciduous species, and tardily deciduous species were different from readily deciduous and evergreen species in five of eight xylem traits. In dry tropical forests, water availability promotes divergence in leaf phenology and xylem traits, ranging from low wood density, evergreen species in moist sites to a combination of low wood density, readily deciduous species plus high wood density, tardily deciduous species in dry sites.  相似文献   

17.
The canopy is host to a large percentage of the flora and fauna in tropical wet forests and is distinct from the forest floor in plant richness, soil type and microclimate. In this study, we examined the influence of tree species and season on soil nutrient cycling processes in canopy soils of four tree species common to Costa Rican wet forests. We also compared the canopy soils to the associated forest floor mineral soils. Both tree species and season had strong effects on canopy soil nutrients and processes. Canopy soils from trees with high litter lignin concentrations had higher net N-mineralization rates and higher dissolved inorganic N concentrations than those with low lignin concentrations. During the dry season, net N-immobilization occurred and dissolved organic and inorganic N and available P concentrations were significantly higher than during the wet season. Overall, canopy soils had higher N levels and higher fungi + bacteria richness than forest floor mineral soils. The differences in canopy soil properties observed among tree species indicates that these species have distinct N cycles that reflect differences in both soil origin and biological controls.  相似文献   

18.
The study examined the effects of leaf traits, soil microsite, and microclimate characteristics on litter decomposition of the dominant species in two functional groups (FG), deciduous and evergreen, in shrublands in NW Patagonia, Argentina. Leaf traits considered were nutrient concentration (C, N, P, C/N, and N/P) and physical characteristics (area, strength, specific leaf area, and dry matter content). Soil microsite characteristics measured were pH, C, N, P, C/N and water retention capacity, while soil microclimate characteristics recorded were soil and air, temperature and moisture, and solar radiation. Five evergreen and five deciduous woody shrub species were selected. During 1 year, litter and microsite properties were measured below canopy: (i) senescent leaf chemical and physical properties, and the quantity as well as field decomposition of litter and (ii) soil chemistry, and soil and air physical properties. The factors controlling litter decomposition were different for each FG. In deciduous species, C/N ratio had a negative effect on decomposition. In evergreen species, decomposition was affected negatively by leaf carbon and dry matter content. Litter decomposition depended exclusively on the inherent senescent leaves traits. The common decomposition pattern between species of both FG could be attributed to similar leaf traits and the correlation between variables that control decomposition in both groups. Plant nutrient inputs associated with the litter decomposition process did not explain the soil nutrient content. These results suggest that other organic matter sources (roots, branches, and fruits) are more important than leaves on soil fertility.  相似文献   

19.
Tree growth is the most important factor in determining the carbon sequestration processes of forest ecosystems. However, the growth phenology (seasonal growth pattern) and responses of tree growth to climatic variables vary considerably among different species, especially between deciduous and evergreen species. Thus, it is crucial to explore the seasonal growth patterns of different tree species in relation to climate to better understand the responses of tree physiology to climate changes, especially in mixed-species forest stands. In this study, we monitored the daily basal area increments of 220 individuals belonging to 15 common broadleaved tree species, nine deciduous and six evergreen species, in mixed-species experimental stands in subtropical China and analysed the relationships between radial stem growth and seasonal climate at a high-temporal resolution. We fitted daily increments of stem diameters with four frequently used nonlinear models and chose the best model for each species. The results showed that the evergreen trees grew faster than the deciduous trees, both annually and within the growing season. The tested nonlinear models (Korf, Weibull, logistic and Gompertz) produced good fits for the growth patterns of all species. Overall, the evergreen species began stem growth earlier and finished later during the growing season than that of the deciduous species. Within the growing season, the radial growth of trees in mixed stands containing both types of species was strongly positively correlated with humidity. In spring, increases in both temperature and moisture increased the daily relative basal area increment of all species. Maximum growth rates occurred when the soil water content reached its highest level and gradually decreased when the soil water content decreased. In summer, high temperatures combined with low amounts of precipitation led to heat-induced summer drought, to which the evergreen trees appeared to be more tolerant than the deciduous trees, which was reflected in the reduced stem growth of the latter. These results indicate the different climate-dependent seasonal growth strategies of evergreen and deciduous trees related to the trade-off described by the leaf economics spectrum, i.e., short-lived leaves with higher assimilation rates in deciduous and longer-lived leaves with a greater drought tolerance in evergreen species.  相似文献   

20.
养分再吸收是植物养分利用的重要策略,体现了植物对养分留存、利用和适应环境的能力。为研究亚热带不同生活型(常绿与落叶)阔叶树养分含量与养分再吸收的关系,以江西阳际峰国家级自然保护区内30种阔叶树为研究对象,测定成熟和衰老叶片氮(N)和磷(P)含量,分析常绿和落叶树种叶片N和P含量及其再吸收效率差异,揭示阔叶树种叶片养分再吸收效率对植物生活型的响应。结果表明: 落叶树种成熟叶片N和P含量显著高于常绿树种,衰老叶片P含量显著高于常绿树种,而两者衰老叶N含量差异不显著;30种阔叶林木叶片的氮再吸收效率(NRE)与磷再吸收效率(PRE)平均值分别为49.6%和50.9%,两种生活型树种间叶片的NRE与PRE无显著差异;落叶和常绿树种叶片的NRE均与衰老叶N含量呈显著负相关,PRE则与衰老叶P含量呈显著负相关,且这种关系在不同生活型之间差异不显著;总物种的PRE-NRE异速生长指数为1.18。江西阳际峰30种不同生活型阔叶树的养分再吸收效率会影响衰老叶片的养分状况,且相较于N,植物偏好从衰老叶中再吸收P。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号