首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周博  范泽鑫  杞金华 《生态学报》2020,40(5):1699-1708
研究采用树木生长环在哀牢山中山湿性常绿阔叶林持续9年(2009—2017年)监测了2个常绿树种(厚皮香,Ternstroemia gymnanthera;南亚枇杷,Eriobotrya bengalensis)和2个落叶树种(西桦,Betula alnoides;珍珠花,Lyonia ovalifolia)的树干月生长量,采用逻辑斯蒂生长模型(Logistic model)模拟树木径向生长量和物候参数,并分析了年、季尺度上径向生长与主要气候因子的关系。结果表明:1)4个树种年平均生长量为6.3 mm,落叶树种年平均生长量(10.6 mm/a)显著高于常绿树种(3.0 mm/a);2)雨季(5—10月)是哀牢山中山湿性常绿阔叶林树木生长的主要时期,4个树种雨季平均生长量为5.9 mm,占全年总生长量的93%,其中落叶树种雨季生长量占全年的96%,而常绿树种雨季生长量占全年的86%;3)常绿树种生长季长度为169天,长于落叶树种(137天),而落叶树种最大生长速率(0.14 mm/d)显著高于常绿树种(0.03 mm/d),最大径向生长速率能很好地预测树种年生长量;4)低温、雾日和光合有效辐射是影响哀牢山亚热带常绿阔叶林4个研究树种径向生长的重要环境因子,其中温度对常绿树种径向生长具有显著影响,而雨日、雾日与空气湿度等水分因子对落叶树种径向生长更为重要。常绿树种年生长量对旱季气候因子的响应相比落叶树种更为敏感,树木旱季生长量除了受低温限制外,也受到水分供给的影响。气候变化可能改变不同物候类型树种在哀牢山中山湿性常绿阔叶林中的生长状态与分布格局。  相似文献   

2.
Munessa Forest is a mountain forest in south-eastern Ethiopia experiencing seasonal rainfall variation. We investigated seasonal cambial activity and dormancy from increment rates of four different tree species belonging to varying life forms, namely, evergreen native conifer (Podocarpus falcatus), evergreen introduced conifer (Pinus patula), evergreen broadleaved tree (Prunus africana) and deciduous broadleaved tree (Celtis africana). Measurements of stem radius fluctuations were registered with the help of high-resolution electronic dendrometers. Daily amplitudes of stem diameter variations and daily and monthly net growth rates were determined and related to climatic variables measured at local climate stations. Thin sections of wood collected with a microcorer every 3–6 weeks allowed a visual control of newly formed wood cells during consecutive time intervals. Lack of water availability during the long dry season induced cambial dormancy of 5–7 months depending on life forms. After the onset of the short rainy season, stem swelling started quite synchronously with a variation of only single days in all studied species. Evergreen tree species were able to initiate wood formation during the short rainy season, whereas growth in the deciduous broadleaved species started in the long rainy season. The acquired data provide a basis for delineating the species-specific growth boundaries and the duration of the cambial growing season.  相似文献   

3.
高佳妮  杨保  秦春 《应用生态学报》2021,32(10):3505-3511
在贺兰山苏峪口国家森林公园,利用径向生长测量仪监测2017和2018年2个生长季内、2个海拔(2010和2330 m)油松的径向生长,研究树木径向生长对干旱的响应。结果表明: 2018年6月的干旱事件使得油松径向生长速率减慢,生长量减小;而7—8月的降水使油松的径向生长重新激活。2018年油松的径向生长主要发生在6—8月,相比2017年延长一个月。油松径向生长与气候因子的响应关系在不同海拔间没有明显的差异。生长季早期干旱对树木径向生长有抑制作用,生长季中后期降水对树木径向生长具有促进作用。该区的气候重建工作中应当充分考虑8月的气候要素对树轮宽度的影响。  相似文献   

4.
为探讨杉木径向变化的季节动态及其气候响应特征,利用径向生长仪连续2年(2016—2017年)监测了江西中部杉木的径向变化过程,分析了径向变化的日动态、季节动态规律及其与气候因子的相关性。结果表明: 杉木日径向昼夜变化呈白天收缩、夜间膨胀的格局;2017年径向生长开始时间比2016年提前一个月,但旱季持续的水分亏缺使生长季也早一个月结束;在主要生长季内(4—9月),无论湿季与旱季,径向增长量与降雨、相对湿度呈显著正相关,与光合有效辐射、饱和水汽压差呈显著负相关,而水分亏缺量的气候相关性与径向增长量相反;旱季严重缺水时土壤含水量对径向变化的影响显著增强。水分条件始终是影响杉木径向变化的关键因素,夏季干旱时可通过提高土壤含水量等有效途径促进杉木径向生长。  相似文献   

5.
Tree species inhabiting riparian forests under Mediterranean climate have evolved to face summer water shortage but may fail to cope with future increases in drought severity. Thus, understanding tree growth phenological variations in response to environmental conditions is necessary to assess the impact of seasonal drought in riparian forests. In this study, we investigated the response of stem radial growth to climate in the narrow-leaved ash (Fraxinus angustifolia) over its distribution in southern Europe. We simulated intra- and inter-annual growth patterns using the Vaganov-Shashkin (VS) model considering five sites subjected to summer drought but showing different climate conditions. The growth pattern in this species varied from unimodal in cool-wet sites to facultative bimodal in warm-dry sites. Bimodal patterns were characterized by two growth peaks coinciding with favorable climate conditions in spring and autumn. The spring growth peak occurs earlier (May) in warm-dry sites than in wet-cool sites (June–July). The variation in the season growth length and growth timing suggests different strategies adopted by this species to cope with summer drought. The VS model revealed different growth patterns across which would be relevant in predicting the response of this and other riparian tree species to climate warming and aridification. Differences in the length of the growing season, timings of growth peaks and the shift from unimodal to bimodal growth patterns should be considered when assessing growth adjustments to future climate scenarios.  相似文献   

6.
气候变化导致的温度升高和降水格局改变可能会影响到树木的生长速率和季节物候。西双版纳热带季节性湿润林分布在石灰岩山中部,属于热带喀斯特生境。由于土层浅薄,土壤保水能力极差,植物生长更容易遭到受到季节性干旱气候的影响。为探究热带季节性湿润林的树木径向生长季节动态及其对环境因子的响应,利用高精度树木生长仪连续两年监测了云南西双版纳热带季节性湿润林中落叶树种苦楝(Melia azedarach)的树干径向变化,并与同步监测的环境因子进行相关分析。结果表明,苦楝径向生长开始、结束以及持续生长的时间在年际间存在差异。与2018年相比,2019年苦楝生长开始和结束的时间较晚,且年生长量较小,这可能是与2019年雨季开始较晚且在生长季早期经历了严重的高温干旱有关。苦楝的径向日生长量与日降水量和相对湿度呈正相关关系,与光合有效辐射、水汽压亏缺和风速呈负相关关系,表明了在苦楝的径向生长主要受水分条件限制。在干旱年份(2019年),苦楝的日生长量与降水和相对湿度的相关性更强。研究结果有助于进一步了解热带喀斯特生境树木生长对气候变化的敏感性以及树木适应季节性干旱气候的策略。  相似文献   

7.
Mediterranean tree species have evolved to face seasonal water shortages, but may fail to cope with future increases in drought frequency and intensity. We investigated stem radial increment dynamics in two typical Mediterranean tree species, Aleppo pine (Pinus halepensis), a drought-avoiding species, and holm oak (Quercus ilex), a drought-tolerant species, in a mixed forest and on contrasting slope aspects (south- and north-facing). Intra- and inter-annual growth patterns were modelled using the VS-Lite2 model for each tree species and slope-aspect. Both species showed a bimodal growth pattern, with peaks coinciding with favourable conditions in spring and autumn. A bimodal growth pattern is always observed in P. halepensis, while in Q. ilex is facultative, which suggests different strategies adopted by these species to cope with summer drought. More specifically, trees on south-facing slope showed a more evident bimodal pattern and more intra-annual density fluctuations. In recent decades, the intensity of both growth peaks has diminished and drifted away due to the increased summer drought. The VS-Lite2 model reveals a niche partitioning between both species. Differences in growing season’s length and timings of growth peaks in both species are relevant for their coexistence and should be considered for estimating mixed-forest responses under climate change scenarios.  相似文献   

8.
A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.  相似文献   

9.
To explain why the composition of evergreen and deciduous forests changes along air temperature gradients, we measured several traits of single leaves from temperate deciduous and evergreen broadleaf trees with simultaneous and successive leaf emergence growing at different altitudes in the field. The parameters included seasonal net photosynthetic rate, longevity, mass per area, nitrogen content, and photosynthetic nitrogen-use efficiency. With decreasing altitude, the leaf longevity of deciduous broadleaf trees increased, whereas the maximum net photosynthetic rate decreased. In contrast, leaf longevity of evergreen broadleaf trees decreased, whereas the minimum net photosynthetic rate in winter increased. Along the air temperature gradient, the annual production of deciduous trees with simultaneous leaf emergence may be constant, because the integrated lifetime net photosynthetic rate (ILNPR) of a single leaf changed little. In comparison, deciduous trees with successive leaf emergence may show enhanced annual production with increasing air temperature, by increasing the total leaf number per branch and tree under an extended growing season. Temperate evergreen broadleaf tree species may also show increased annual production with increasing air temperature by sufficiently raising the number of the first-year leaves to the total leaves of branch and tree, which is accelerated by raising the integrated first-year net photosynthetic rate of the single leaf, despite little change in the ILNPR. With increasing air temperature from cool-temperate to warm-temperate zones, evergreen broadleaf tree species gain an advantage of the annual production over deciduous broadleaf tree species with simultaneous leaf emergence.  相似文献   

10.
Non-structural carbon compounds in temperate forest trees   总被引:21,自引:3,他引:18  
The current carbon supply status of temperate forest trees was assessed by analysing the seasonal variation of non‐structural carbohydrate (NSC) concentrations in leaves, branch wood and stem sapwood of 10 tree species (six deciduous broad‐leafed, one deciduous conifer and three evergreen conifer trees) in a temperate forest that is approximately 100 years old. In addition, all woody tissue was analysed for lipids (acylglycerols). The major NSC fractions were starch, sucrose, glucose and fructose, with other carbohydrates (e.g. raffinose and stachyose) and sugar alcohols (cyclitols and sorbitol) playing only a minor quantitative role. The radial distribution of NSC within entire stem cores, assessed here for the first time in a direct interspecific comparison, revealed large differences in the size of the active sapwood fraction among the species, reflecting the specific wood anatomy (ring‐porous versus diffuse‐porous xylem). The mean minimum NSC concentrations in branch wood during the growing season was 55% of maximum, and even high NSC concentrations were maintained during times of extensive fruit production in masting Fagus sylvestris. The NSC in stem sapwood varied very little throughout the season (cross species mean never below 67% of maximum), and the small reductions observed were not significant for any of the investigated species. Although some species contained substantial quantities of lipids in woody tissues (‘fat trees’; Tilia, Pinus, Picea, Larix), the lipid pools did not vary significantly across the growing season in any species. On average, the carbon stores of deciduous trees would permit to replace the whole leave canopy four times. These data imply that there is not a lot of leeway for a further stimulation of growth by ongoing atmospheric CO2 enrichment. The classical view that deciduous trees rely more on C‐reserves than evergreen trees, seems unwarranted or has lost its justification due to the greater than 30% increase in atmospheric CO2 concentrations over the last 150 years.  相似文献   

11.
Leaf flushing during the dry season: the paradox of Asian monsoon forests   总被引:3,自引:0,他引:3  
Aim Most deciduous species of dry monsoon forests in Thailand and India form new leaves 1–2 months before the first monsoon rains, during the hottest and driest part of the year around the spring equinox. Here we identify the proximate causes of this characteristic and counterintuitive ‘spring‐flushing’ of monsoon forest trees. Location Trees of 20 species were observed in semi‐deciduous dry monsoon forests of northern Thailand with a 5–6‐month‐long severe dry season and annual rainfall of 800–1500 mm. They were growing on dry ridges (dipterocarp–oak forest) or in moist gullies (mixed deciduous–evergreen forest) at 680–750 m altitude near Chiang Mai and in a dry lowland stand of Shorea siamensis in Uthai Thani province. Methods Two novel methods were developed to analyse temporal and spatial variation in vegetative dry‐season phenology indicative of differences in root access to subsoil water reserves. Results Evergreen and leaf exchanging species at cool, moist sites leafed soon after partial leaf shedding in January–February. Drought‐resistant dipterocarp species were evergreen at moist sites, deciduous at dry sites, and trees leafed soon after leaf shedding whenever subsoil water was available. Synchronous spring flushing of deciduous species around the spring equinox, as induced by increasing daylength, was common in Thailand's dipterocarp–oak forest and appears to be prevalent in Indian dry monsoon forests of the Deccan peninsula with its deep, water‐storing soils. Main conclusions In all observed species leafing during the dry season relied on subsoil water reserves, which buffer trees against prolonged climatic drought. Implicitly, rainfall periodicity, i.e. climate, is not the principal determinant of vegetative tree phenology. The establishment of new foliage before the summer rains is likely to optimize photosynthetic gain in dry monsoon forests with a relatively short, wet growing season.  相似文献   

12.
Observations that deciduous and evergreen conifers growing in Britain show similar annual growth increments, despite marked differences in short-term growth rates, led to a comparative study of seasonal photosynthetic capacity in established trees of four coniferous species with contrasting growth habits. The photo-synthetic data were compared with seasonal changes in environmental parameters and chloroplast ultrastructure. The maximum net photosynthetic rates (at 20°C) recorded for Larix leptolepis were higher than those for the evergreen conifers when expressed on a leaf weight basis but not when expressed per unit leaf area. The photosynthetic efficiency of new needles in the evergreen species showed an overall decline from just after needle maturity until just before budbreak in their second season, after which photosynthetic rates recovered temporarily, approaching previous maximum levels. There was no obvious correlation between seasonal photosynthetic efficiency (at 20°C) on the one hand, and daily air, and (30 cm) ground temperatures on the other, and there was no obvious winter suppression of evergreen photosynthetic rates. Evergreen needles showed starch loss and some membrane changes with the onset of winter, but there was no evidence for wintertime chloroplast clumping or membrane disruption.  相似文献   

13.

Key message

We demonstrate that tropical trees growing in wet climates can have a marked seasonality in cambium activity and stem growth associated with high temperature and day length of summer.

Abstract

Monitoring the rhythm of tree growth associated with the growth rings can contribute substantially to understanding forest dynamics and the management of tropical forests. In this study, we monitored the girth increment rhythm and described the wood characteristics (anatomy of growth rings, wood specific gravity) in 10 tropical tree species (103 individuals) naturally occurring in a wet and weakly seasonal region of Atlantic Forest in southern Brazil. We aimed to verify whether tree growth dynamics are associated with climate and woody anatomy in tropical trees with contrasting ecological characteristics. We installed permanent dendrometer bands and monthly assessed the girth increment for 22 months. We collected wood samples (non-destructive method), measured wood specific gravity and prepared permanent slides to characterize the growth ring markers. We found growth rings in all species (distinct in six species); deciduous species produced more distinguishable tree rings compared with semi-deciduous and evergreen tree species. Species varied in their accumulated girth growth (in average, from 1.83 to 62.64 mm), growth rates (1–15 %), and annual radial increment (0.16–5.44 mm). Girth increment was positively related to temperature and day length in five out of ten tree species, indicating the possible effects of these climatic variables in triggering cambial activity in these species. The growth pattern varied among species and was marginally associated to the tree deciduousness. We concluded that even in wet and less seasonal climates, there can be an association in the cambium activity and stem growth with the hotter and longer days of summer months.
  相似文献   

14.
《Global Change Biology》2018,24(6):2339-2351
Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi‐arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad‐scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors—the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)—are stronger drivers of drought sensitivity than soil and stand characteristics. Drought‐induced reductions in tree growth were greatest when the droughts occurred during early‐season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early‐season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.  相似文献   

15.
The effects of short-term extreme events on tree functioning and physiology are still rather elusive. European beech is one of the most sensitive species to late frost and water shortage. We investigated the intra-annual C dynamics in stems under such conditions. Wood formation and stem CO2 efflux were monitored in a Mediterranean beech forest for 3 years (2015–2017), including a late frost (2016) and a summer drought (2017). The late frost reduced radial growth and, consequently, the amount of carbon fixed in the stem biomass by 80%. Stem carbon dioxide efflux in 2016 was reduced by 25%, which can be attributed to the reduction of effluxes due to growth respiration. Counter to our expectations, we found no effects of the 2017 summer drought on radial growth and stem carbon efflux. The studied extreme weather events had various effects on tree growth. Even though late spring frost had a strong impact on beech radial growth in the current year, trees fully recovered in the following growing season, indicating high resilience of beech to this stressful event.  相似文献   

16.
Linking drought to the timing of physiological processes governing tree growth remains one limitation in forecasting climate change effects on tropical trees. Using dendrometers, we measured fine‐scale growth for 96 trees of 25 species from 2013 to 2016 in an everwet forest in Puerto Rico. Rainfall over this time span varied, including an unusual, severe El Niño drought in 2015. We assessed how growing season onset, median day, conclusion, and length varied with absolute growth rate and tree size over time. Stem growth was seasonal, beginning in February, peaking in July, and ending in November. Species growth rates varied between 0 and 8 mm/year and correlated weakly with specific leaf area, leaf phosphorus, and leaf nitrogen, and to a lesser degree with wood specific gravity and plant height. Drought and tree growth were decoupled, and drought lengthened and increased variation in growing season length. During the 2015 drought, many trees terminated growth early but did not necessarily grow less. In the year following drought, trees grew more over a shorter growing season, with many smaller trees showing a post‐drought increase in growth. We attribute the increased growth of smaller trees to release from light limitation as the canopy thinned because of the drought, and less inferred hydraulic stress than larger trees during drought. Soil type accounted for interannual and interspecific differences, with the finest Zarzal clays reducing tree growth. We conclude that drought affects the phenological timing of tree growth and favors the post‐drought growth of smaller, sub‐canopy trees in this everwet forest. Abstract in Spanish is available with online material.  相似文献   

17.
树木是森林生态系统的基本组成, 其生长受气象因子的影响, 基于此, 该研究通过监测樟子松(Pinus sylvestris var. mongolica)的径向生长, 研究樟子松生长日动态规律、季节动态规律及其与气象因子的关系, 探讨河北塞罕坝地区樟子松森林生态系统对气候变化的响应机制。此外, 以往研究树木生长大多数基于树轮年代学, 缺少短期树木径向生长动态的研究。该研究利用径向生长记录仪监测河北塞罕坝机械林场内樟子松连续3年(2016-2018)的树干径向动态变化。结果表明: 由于树干的水分吸收与蒸腾作用, 樟子松树干径向昼夜变化呈现季节性规律, 可划分为4个阶段: 春季萌动期、夏季生长期、秋冬交替期和冬季休眠期。塞罕坝樟子松树干径向生长开始于每年4月初; 4月初至5月中旬为水分恢复阶段; 5月中旬至7月中旬为快速生长阶段; 7月中旬至10月中旬为缓慢生长阶段; 10月中、下旬生长趋于停止, 并有树干径向收缩现象。以一天为时间尺度, 在快速生长阶段(5月初至7月中旬)樟子松径向生长主要受空气温度的影响; 缓慢生长阶段(7月中旬至10月下旬)降水量、空气温度均影响樟子松径向生长。以15天为时间尺度, 温度对樟子松径向生长的影响显著。结果显示樟子松的生长动态规律及其影响因子, 为未来樟子松生理研究提供参考时间节点, 同时在极端低温与干旱的情况下, 为半干旱地区樟子松的生长状态提供参考依据。  相似文献   

18.
In tropical forests, deciduousness is an outcome of integrated effect of drought, tree characteristics and soil moisture conditions and thus it is a reliable indicator of seasonal drought experienced by different tree species. Variations in the deciduousness are associated with several ecophysiological characteristics, such as varying allocation pattern of metabolic products, resource capture and conservation, water relations and stem water storages, annual carbon sequestration, timing of reproductive event initiation, extent of separation of vegetative and reproductive events and leaf strategies, and it helps in maintenance of water balance and protection of tree organs during the seasonal drought. Tropical forests support mosaics of tree functional types showing marked differences in the duration of deciduousness (from leaf exchanging to >8 months deciduous), as a result of varying degree of water stress experienced by physiognomy, distribution and wood anatomy of tropical trees. Wide variations in deciduousness in the same species growing at different sites suggest the high sensitivity of tropical trees to small changes in growing habitat. In the present review we have explored the ecological significance of deciduousness in tropical trees with emphasis on: (a) inter- and intraspecies plasticity in deciduousness, (b) various capacity adaptations related with the duration of deciduousness, (c) relationship between tree stem water status and deciduousness, and (d) probable effect of impending climate change on tropical trees. An attempt has also been made to establish deciduousness as climate change indicator in the dry tropics. There is need to develop capabilities to detect and predict the impact of climate change on deciduousness through long-term phenological network in tropics. Remote sensing techniques can generate valuable ecological information such as leaf level drought response and phenological patterns. Deciduousness has the potential to emerge as an important focus for ecological research to address critical questions in global modeling, monitoring, and climate change.  相似文献   

19.
《Global Change Biology》2018,24(8):3537-3545
Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life‐span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.  相似文献   

20.
We investigated the local environmental controls on daily fluctuations of cumulative radial increment and cambial hydration of three dominant, evergreen tree species from montane, Coastal rainforests of Chiloé Island, Chile (42° 22′ S). During 2 years (1997–1998 and 1998–1999) we recorded hourly cumulative radial increments using electronic band dendrometers in the long‐lived conifer Fitzroya cupressoides (Cupressaceae), the evergreen broad‐leaved Nothofagus nitida (Nothofagaceae), and the narrow‐leaved conifer Podocarpus nubigena (Podocarpaceae). We also measured soil and cambial tissue hydration using capacitance sensors, together with air and soil temperature and rainfall during the period of the study. In addition, we collected cores of these tree species to evaluate how dendrometer measurements reflect annual tree ring width. One‐year long daily time series of cumulative radial increments suggests that radial growth of Fitzroya cupressoides was initiated slowly in early spring, with a maximum in early summer. Multiple regressions showed positive relations between daily precipitation and radial index (i.e. the difference in cumulative radial increment of two consecutive days) in the three species. According to path analysis there was a significant direct effect of changes in tree hydration on radial index of the three focal species. In emergent, pioneer species such as Nothofagus and Fitzroya, radial index was negatively affected by changes in maximum air temperature and photosynthetically active radiation, probably because of high evapotranspiration demand on warm sunny days. The shade‐tolerant species Podocarpus nubigena was positively affected by photosynthetically active radiation. Our diel scale findings support the use of tree ring widths for reconstructing past climate in these southern temperate forests and provide evidence that rainforest trees may be highly sensitive to future declines in rainfall and temperature increases during summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号