首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Two glucose transport proteins, GLUT1 and GLUT3, have been detected in brain. GLUT1 is concentrated in the endothelial cells of the blood-brain barrier and may be present in neurons and glia; GLUT3 is probably the major neuronal glucose transporter. Of the few studies of glucose transport in the immature brain, none has quantified GLUTS. This study used membrane isolation and immunoblotting techniques to examine the developmental expression of GLUT1 and GLUT3 in four forebrain regions, cerebral microvessels, and choroid plexus, from rats 1–30 days postnatally as compared with adults. The GLUT1 level in whole brain samples was low for 14 days, doubled by 21 days, and doubled again to attain adult levels by 30 days; there was no regional variation. The GLUT3 level in these samples was low during the first postnatal week, increased steadily to adult levels by 21–30 days, and demonstrated regional specificity. The concentration of GLUT1 in microvessels increased steadily after the first postnatal week; the GLUT1 level in choroid plexus was high at birth, decreased at 1 week, and then returned to near fetal levels. GLUT3 was not found in microvessels or choroid plexus. This study indicates that both GLUT1 and GLUT3 are developmentally regulated in rat brain: GLUT1 appears to relate to the nutrient supply and overall growth of the brain, whereas GLUT3 more closely relates to functional activity and neuronal maturation.  相似文献   

2.
Developing rat brain undergoes a series of functional and anatomic changes which affect its rate of cerebral glucose utilization (CGU). These changes include increases in the levels of the glucose transporter proteins, GLUT1 and GLUT3, in the blood-brain barrier as well as in the neurons and glia. 55 kDa GLUT1 is concentrated in endothelial cells of the blood-brain barrier, whereas GLUT3 is the predominant neuronal transporter. 45 kDa GLUT1 is in non-vascular brain, probably glia. Studies of glucose utilization with the 2-14C-deoxyglucose method of Sokoloffet al., (1977), rely on glucose transport rate constants, k1 and k2, which have been determined in the adult rat brain. The determination of these constants directly in immature brain, in association with the measurement of GLUT1, GLUT3 and cerebral glucose utilization suggests that the observed increases in the rate constants for the transport of glucose into (k1) and out of (k2) brain correspond to the increases in 55 kDa GLUT1 in the blood-brain barrier. The maturational increases in cerebral glucose utilization, however, more closely relate to the pattern of expression of non-vascular GLUT1 (45 kDa), and more specifically GLUT3, suggesting that the cellular expression of the glucose transporter proteins is rate limiting for cerebral glucose utilization during early postnatal development in the rat.  相似文献   

3.
Ependymal cells appear to be totally differentiated during the first 3 weeks in the mouse brain. Early during postnatal development ependymal cells differentiate and undergo metabolic activation, which is accompanied by increased glucose uptake. We propose that ependymal cells induce an overexpression of the glucose transporter, GLUT1, during the first 2 weeks after delivery in order to maintain the early metabolic activation. During the first postnatal day, GLUT1 is strongly induced in the upper region of the third ventricle and in the ventral area of the rostral cerebral aqueduct. During the next 4 days, GLUT1 is expressed in all differentiated ependymal cells of the third ventricle and in hypothalamic tanycytes. At the end of the first week, ependymal cell differentiation and GLUT1 overexpression is concentrated in the latero-ventral area of the aqueduct. We propose that ependymal cell differentiation and GLUT1 overexpression is a synchronous process in the ventricular wall.  相似文献   

4.
The corneal epithelial tissue is a layer of rapidly growing cells that are highly glycolytic and express GLUT1 as the major glucose transporter. It has been shown that GLUT1 in L929 fibroblast cells and other cell lines can be acutely activated by a variety agents. However, the acute regulation of glucose uptake in corneal cells has not been systematically investigated. Therefore, we examined glucose uptake in an immortalized human corneal–limbal epithelial (HCLE) cell line and compared it to glucose uptake in L929 fibroblast cells, a cell line where glucose uptake has been well characterized. We report that the expression of GLUT1 in HCLE cells is 6.6-fold higher than in L929 fibroblast cells, but the HCLE cells have a 25-fold higher basal rate of glucose uptake. Treatment with agents that interfere with mitochondrial metabolism, such as sodium azide and berberine, activate glucose uptake in L929 cells over 3-fold, but have no effect on glucose uptake HCLE cells. Also, agents known to react with thiols, such cinnamaldehyde, phenyarsine oxide and nitroxyl stimulate glucose uptake in L929 cells 3–4-fold, but actually inhibit glucose uptake in HCLE cells. These data suggest that in the fast growing HCLE cells, GLUT1 is expressed at a higher concentration and is already highly activated at basal conditions. These data support a model for the acute activation of GLUT1 that suggests that the activity of GLUT1 is enhanced by the formation of an internal disulfide bond within GLUT1 itself.  相似文献   

5.
Abstract: Several reports have suggested a characteristic decrease in glucose use in the striatum of patients with Huntington's disease (HD) may contribute to the cellular atrophy of the caudate and putamen. We examined the expression of the two major glucose transporter isoforms of brain, GLUT1 and GLUT3. GLUT1 is found largely in capillary endothelial cells and to a lesser extent in the brain parenchyma, whereas GLUT3 is localized primarily in neurons. Membranes prepared from postmortem samples of HD caudate and cortex and non-HD caudate and cortex were separated on 10% sodium dodecyl sulfate-polyacrylamide gels and probed with antisera to GLUT1 and GLUT3 by western blotting. Compared with controls, GLUT1 and GLUT3 transporter expression in caudate was decreased by three- and fourfold, respectively, in grade 3 of the disease. At earlier stages (grade 1), there was no significant difference in the expression of the two transporter isoforms compared with nondiseased controls. It is surprising that despite a substantial increase in glial fibrillary acidic protein immunoreactivity (an indicator of the extent of gliosis), glucose transporter expression was diminished significantly in HD caudate. The results suggest in the absence of a significant number of neurons, as in grade 3, glial cell GLUT1 and GLUT3 expression is down-regulated, perhaps reflecting the decreased metabolic demand of this brain region in HD.  相似文献   

6.
Abstract : The transport of glucose across the blood-brain barrier (BBB) is mediated by the high molecular mass (55-kDa) isoform of the GLUT1 glucose transporter protein. In this study we have utilized the tritiated, impermeant photolabel 2-N-[4-(1-azi-2,2,2-trifluoroethyl)[2-3H]propyl]-1,3-bis(d -mannose-4-yloxy)-2-propylamine to develop a technique to specifically measure the concentration of GLUT1 glucose transporters on the luminal surface of the endothelial cells of the BBB. We have combined this methodology with measurements of BBB glucose transport and immunoblot analysis of isolated brain microvessels for labeled luminal GLUT1 and total GLUT1 to reevaluate the effects of chronic hypoglycemia and diabetic hyperglycemia on transendothelial glucose transport in the rat. Hypoglycemia was induced with continuous-release insulin pellets (6 U/day) for a 12- to 14-day duration ; diabetes was induced by streptozotocin (65 mg/kg i.p.) for a 14- to 21-day duration. Hypoglycemia resulted in 25-45% increases in regional BBB permeability-surface area (PA) values for d -[14C]glucose uptake, when measured at identical glucose concentration using the in situ brain perfusion technique. Similarily, there was a 23 ± 4% increase in total GLUT1/mg of microvessel protein and a 52 ± 13% increase in luminal GLUT1 in hypoglycemic animals, suggesting that both increased GLUT1 synthesis and a redistribution to favor luminal transporters account for the enhanced uptake. A corresponding (twofold) increase in cortical GLUT1 mRNA was observed by in situ hybridization. In contrast, no significant changes were observed in regional brain glucose uptake PA, total microvessel 55-kDa GLUT1, or luminal GLUT1 concentrations in hyperglycemic rats. There was, however, a 30-40% increase in total cortical GLUT1 mRNA expression, with a 96% increase in the microvessels. Neither condition altered the levels of GLUT3 mRNA or protein expression. These results show that hypoglycemia, but not hyperglycemia, alters glucose transport activity at the BBB and that these changes in transport activity result from both an overall increase in total BBB GLUT1 and an increased transporter concentration at the luminal surface.  相似文献   

7.
8.
9.
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport.  相似文献   

10.
PACSIN family members regulate intracellular vesicle trafficking via their ability to regulate cytoskeletal rearrangement. These processes are known to be involved in trafficking of GLUT1 and GLUT4 in adipocytes. In this study, PACSIN3 was observed to be the only PACSIN isoform that increases in expression during 3T3-L1 adipocyte differentiation. Overexpression of PACSIN3 in 3T3-L1 adipocytes caused an elevation of glucose uptake. Subcellular fractionation revealed that PACSIN3 overexpression elevated GLUT1 plasma membrane localization without effecting GLUT4 distribution. In agreement with this result, examination of GLUT exofacial presentation at the cell surface by photoaffinity labeling revealed significantly increased GLUT1, but not GLUT4, after overexpression of PACSIN3. These results establish a role for PACSIN3 in regulating glucose uptake in adipocytes via its preferential participation in GLUT1 trafficking. They are consistent with the proposal, which is supported by a recent study, that GLUT1, but not GLUT4, is predominantly endocytosed via the coated pit pathway in unstimulated 3T3-L1 adipocytes.  相似文献   

11.
12.
13.
Ependymal cells have been reported to express the facilitative glucose carriers GLUT1, GLUT2, and GLUT4, as well as glucokinase. They are therefore speculated to be part of the cerebral glucose sensing system and may also respond to insulin with alterations in their glucose uptake rate. A cell culture model was employed to study the functional status of ependymal insulin-regulated glucose uptake in vitro. Insulin increased the uptake of the model substrate 2-deoxyglucose (2-DG) dependent on the insulin concentration. This was due to a near doubling of the maximal 2-DG uptake rate. Insulin-like growth factor (IGF-1) was at least 10 times more potent than insulin in stimulating the rate of ependymal 2-DG uptake, suggesting that IGF-1, rather than insulin, is the physiological agonist regulating glucose transport in ependymal cells. The predominant glucose transporter in ependymal cell cultures was found to be GLUT1, which is apparently regulated by IGF-1 in ependymal cells.  相似文献   

14.
Complementary DNAs encoding the mouse GLUT3/brain facilitative glucose transporter have been isolated and sequenced. The predicted amino acid sequence indicates that mouse GLUT3 is composed of 493 amino acids and has 83 and 89% identity and similarity, respectively, to the sequence of human GLUT3. In contrast to human GLUT3 mRNA, which can be readily detected by RNA blotting in all human tissues that have been examined, mouse GLUT3 mRNA was only present at significant levels in brain. In situ hybridization showed differential expression of GLUT3 mRNA in several regions of adult mouse brain. Specific expression was observed in the hippocampus, with GLUT3 mRNA levels being higher in areas CA1 to CA3 than in the dentate gyrus. It was also detected in the Purkinje cell layer of the cerebellum and in the cerebral cortex, with higher expression in the piriform cortex than in other regions of the cortex. Antisera to mouse GLUT3 immunoblotted a series of proteins of 45-50 kDa in mouse brain plasma membranes. These results are consistent with GLUT3 being a neuronal glucose transporter.  相似文献   

15.
Arsenic exposure is associated with hypertension, diabetes, and cancer. Some mammals methylate arsenic. Saccharomyces cerevisiae hexose permeases catalyze As(OH)(3) uptake. Here, we report that mammalian glucose transporter GLUT1 catalyzes As(OH)(3) and CH(3)As(OH)(2) uptake in yeast or in Xenopus laevis oocytes. Expression of GLUT1 in a yeast lacking other glucose transporters allows for growth on glucose. Yeast expressing yeast HXT1 or rat GLUT1 transport As(OH)(3) and CH(3)As(OH)(2). The K(m) of GLUT1 is to 1.2mM for CH(3)As(OH)(2), compared to a K(m) of 3mM for glucose. Inhibition between glucose and CH(3)As(OH)(2) is noncompetitive, suggesting differences between the translocation pathways of hexoses and arsenicals. Both human and rat GLUT1 catalyze uptake of both As(OH)(3) and CH(3)As(OH)(2) in oocytes. Thus GLUT1 may be a major pathway uptake of both inorganic and methylated arsenicals in erythrocytes or the epithelial cells of the blood-brain barrier, contributing to arsenic-related cardiovascular problems and neurotoxicity.  相似文献   

16.
Liu Y  Liu F  Iqbal K  Grundke-Iqbal I  Gong CX 《FEBS letters》2008,582(2):359-364
Brain glucose uptake/metabolism is impaired in Alzheimer disease (AD). Here, we report that levels of the two major brain glucose transporters (GLUT1 and GLUT3) responsible for glucose uptake into neurons were decreased in AD brain. This decrease correlated to the decrease in O-GlcNAcylation, to the hyperphosphorylation of tau, and to the density of neurofibrillary tangles in human brains. We also found down-regulation of hypoxia-inducible factor 1, a major regulator of GLUT1 and GLUT3, in AD brain. These studies provide a possible mechanism by which GLUT1 and GLUT3 deficiency could cause impaired brain glucose uptake/metabolism and contribute to neurodegeneration via down-regulation of O-GlcNAcylation and hyperphosphorylation of tau in AD.  相似文献   

17.
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 levels in insulin-stimulated cells. At a 5% concentration, DMSO also increased cell surface levels of the transferrin receptor and GLUT1. Glucose uptake experiments indicated that while DMSO enhanced cell surface glucose transporter levels, it also inhibited glucose transporter activity. Our studies further demonstrated that DMSO did not sensitize the adipocytes for insulin and that its effect on GLUT4 was readily reversible (t1/2∼12 min) and maintained in insulin-resistant adipocytes. An enhancement of insulin-induced GLUT4 translocation was not observed in 3T3-L1 preadipocytes and L6 myotubes, indicating cell specificity. DMSO did not enhance insulin signaling nor exocytosis of GLUT4 vesicles, but inhibited GLUT4 internalization. While other chemical chaperones (glycerol and 4-phenyl butyric acid) also acutely enhanced insulin-induced GLUT4 translocation, these effects were not mediated via changes in GLUT4 endocytosis. We conclude that DMSO is the first molecule to be described that instantaneously enhances insulin-induced increases in cell surface GLUT4 levels in adipocytes, at least in part through a reduction in GLUT4 endocytosis.  相似文献   

18.
Glucose is a precursor of lactose, the major carbohydrate and osmotic constituent of human milk, which is synthesized in the Golgi. The GLUT1 glucose transporter is the only glucose transporter isoform expressed in the mammary gland. The hypothesis that lactogenic hormones induce GLUT1 and cause its localization to the Golgi of mammary epithelial cells was tested in CIT(3)mouse mammary epithelial cells. Treatment with prolactin and hydrocortisone caused a 15-fold induction of GLUT1 by Western blotting, but 2-deoxyglucose uptake decreased. Subcellular fractionation and density gradient centrifugation demonstrated enrichment of Golgi fractions with GLUT1. Lactogenic hormones enhanced GLUT1 glycosylation, but did not determine whether GLUT1 was targeted to plasma membrane or to Golgi. Confocal microscopy revealed that lactogenic hormones alter GLUT1 targeting from a plasma membrane pattern to a predominant perinuclear distribution with punctate scattering through the cytoplasm. GLUT1 is targeted to a compartment which is more sensitive to Brefeldin A than the compartments in which GM130 and beta-COP reside. Targeting of GLUT1 to endosomes was specifically excluded. We conclude that prolactin and hydrocortisone induce GLUT1, enhance GLUT1 glycosylation, and cause glycosylation-independent targeting of GLUT1 to Brefeldin A-sensitive vesicles which may represent a subcompartment of cis-Golgi. These results demonstrate a hormonally-regulated targeting mechanism for GLUT1 and are consistent with an important role for GLUT1 in the provision of substrate for lactose synthesis.  相似文献   

19.
Summary The syncytiotrophoblast covering the surface of the placental villi contains the machinery for the transfer of specific substances between maternal and fetal blood, and also serves as a barrier. Existence of a facilitated-diffusion transporter for glucose in the syncytiotrophoblast has been suggested. Using antibodies to erythrocyte/HepG2-type glucose transporter (GLUT1), one isoform of the facilitated-diffusion glucose transporters, we detected a 50 kD protein in human placenta at term. By use of immunohistochemistry, GLUT1 was found to be abundant in both the syncytiotrophoblast and cytotrophoblast. Endothelial cells of the fetal capillaries also showed positive staining for GLUT1. Electron-microscopic examination revealed that GLUT1 was concentrated at both the microvillous apical plasma membrane and the infolded basal plasma membrane of the syncytiotrophoblast. Plasma membrane of the cytotrophoblast was also positive for GLUT1. GLUT1 at the apical plasma membrane of the syncytiotrophoblast may function for the entry of glucose into its cytoplasm, while GLUT1 at the basal plasma membrane may be essential for the exit of glucose from the cytoplasm into the stroma of the placental villi. Thus, GLUT1 at the plasma membranes of syncytiotrophoblast and endothelial cells may play an important role in the transport of glucose across the placental barrier.  相似文献   

20.
In the brain, glucose is transported by GLUT1 across the blood-brain barrier and into astrocytes, and by GLUT3 into neurons. In the present study, the expression of GLUT1 and GLUT3 mRNA and protein was determined in adult neural stem cells cultured from the subventricular zone of rats. Both mRNAs and proteins were coexpressed, GLUT1 protein being 5-fold higher than GLUT3. Stress induced by hypoxia and/or hyperglycemia increased the expression of GLUT1 and GLUT3 mRNA and of GLUT3 protein. It is concluded that adult neural stem cells can transport glucose by GLUT1 and GLUT3 and can regulate their glucose transporter densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号