首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The identification of the southern African Synodontis species is hampered by variable and overlapping morphological characteristics such as colour, pigmentation patterns and morphometric ratios. Species are often misidentified due to the complicated nature of the present identification keys. The morphological key proposed in this note uses simplified characters including the shape of the humeral process, size of the outer mandibular barbel, teeth rows, position of the mouth, basal membrane of the maxillary barbel and length of the maxillary barbels, plus the natural distribution range of certain species to facilitate positive identification of southern African Synodontis specimens.  相似文献   

2.
Sharks and their relatives (Elasmobranchii) are highly threatened with extinction due to various anthropogenic pressures. The abundant fossil record of fossil taxa has allowed the tracing of the evolutionary history of modern elasmobranchs to at least 250 MYA; nonetheless, exactly how far back the fossil record of living taxa goes has never been collectively surveyed. In this study, the authors assess the representation and extent of the fossil record of elasmobranchs currently living in our oceans by collecting their oldest records and quantifying first appearance dates at different taxonomic levels (i.e., orders, families, genera and species), ecological traits (e.g., body size, habitat and feeding mechanism) and extinction risks (i.e., threatened, not threatened and data deficient). The results of this study confirm the robust representation of higher taxonomic ranks, with all orders, most of the families and over half of the extant genera having a fossil record. Further, they reveal that 10% of the current global species diversity is represented in the geological past. Sharks are better represented and extend deeper in time than rays and skates. While the fossil record of extant genera (e.g., the six gill sharks, Hexanchus) goes as far back as c. 190 MYA, the fossil record of extant species (e.g., the sand shark, Carcharias taurus Rafinesque 1810) extends c. 66 MYA. Although no significant differences were found in the extent of the fossil record between ecological traits, it was found that the currently threatened species have a significantly older fossil record than the not threatened species. This study demonstrate that the fossil record of extant elasmobranchs extends deep into the geologic time, especially in the case of threatened sharks. As such, the elasmobranch geological history has great potential to advance the understanding of how species currently facing extinction have responded to different stressors in the past, thereby providing a deep-time perspective to conservation.  相似文献   

3.
Studies of the biostratigraphy and palaeoecology of fossil vertebrate assemblages require large samples of accurately identified specimens. Such analyses can be hampered by the inability to assign isolated and worn remains to specific taxa. Entoptychine gophers are a diverse group of burrowing rodents found in Oligo‐Miocene deposits of the western United States. In both entoptychines and their extant relatives the geomyines, diagnostic characters of the occlusal surface of the teeth are modified with wear, making difficult the identification of many isolated fossil teeth. We use geometric morphometrics to test the hypothesis that tooth shape informs taxonomic affinities and expected levels of morphological variation across gopher taxa. We also incorporate data from microcomputer tomography to investigate changes in occlusal surface shape through wear within individuals. Our analyses demonstrate the usefulness of our approach in identifying extant geomyines to the genus, subgenus and species levels, and fossil entoptychines to the genus and, in some cases, the species level. Our results cast doubt on the validity of some species within Entoptychus and suggest future revisions to entoptychine taxonomy. The amounts of morphological divergence observed among fossil and extant genera are similar. Fossil species do not differ greatly from extant ones in that regard either. Further work evaluating the morphological variation within and across entoptychine species, including unworn teeth and osteological material, will allow revised analyses of the biostratigraphy and palaeoecology of important Oligo‐Miocene mammalian assemblages of the western United States and help to infer the phylogenetic relationships and evolution of gophers.  相似文献   

4.
Species diversity and morphological disparity are two measures to examine the diversity of life. Evidence based on the fossil record suggests a complex relation between these two parameters of biodiversity including frequent decoupling of their assembly through time. However, rather few studies explored the correlation of these two measurements by studying extant plant species. This study was designed to explore the accumulation of morphological disparity of the derived Neotropical fern genus Pleopeltis. To explore the relationship of species diversity and morphological disparity, we employed several approaches including divergence time estimates based on DNA sequence variation, reconstruction of character state changes based on a morphological matrix comprising 41 discrete characters, and exploration of the phylomorphospace. Accumulation of species diversity and morphological disparity was found to be concordant although the assumption of independence was not rejected for the accumulation of genetic and morphological variation. The phylomorphospace reconstruction provided further evidence for clade‐specific morphospace expansion that imply developmental pathways and competition among clades as major factors shaping the assembly of morphological disparity over time.  相似文献   

5.
Fossil records of endemic plants play an important role in recognizing the floristic history of East Asia and thereby facilitate the conservation of plant diversity in the region. However, the fossil record of many extant East Asian endemic genera remains poorly documented thus far. Here, we report an infructescence fossil of an East Asian endemic genus, Sladenia (Sladeniaceae), from the early Miocene of southeastern Yunnan, China. The fossil is characterized by: (i) dichasial cymes; and (ii) flask‐shaped ovary with dense subparallel ribs on the surface extending from the base to the distal end of the united style. It represents the first fossil record of Sladenia in Asia, showing that the genus was established in the region at least by the early Miocene. Given that a much older fossil record of Sladeniaceae has been reported from Africa and the sister group of Sladenia is distributed only in Africa, Sladenia is not likely of East Asian origin. The present endemic status of Sladenia was possibly achieved by regional extirpation in Africa and taking refuge in East Asia. This case thus supports the “Museum” rather than “Cradle” hypothesis for the genesis of high plant species in the flora of East Asia. A comparison of the present fossil with extant Sladenia infructescence shows morphological stasis from the early Miocene to present. Such evolutionary tardiness might have resulted in the reduced fitness of the genus, which further caused its current endangered situation.  相似文献   

6.
Interpreting morphological variation within the early hominin fossil record is particularly challenging. Apart from the fact that there is no absolute threshold for defining species boundaries in palaeontology, the degree of variation related to sexual dimorphism, temporal depth, geographic variation or ontogeny is difficult to appreciate in a fossil taxon mainly represented by fragmentary specimens, and such variation could easily be conflated with taxonomic diversity. One of the most emblematic examples in paleoanthropology is the Australopithecus assemblage from the Sterkfontein Caves in South Africa. Whereas some studies support the presence of multiple Australopithecus species at Sterkfontein, others explore alternative hypotheses to explain the morphological variation within the hominin assemblage. In this review, I briefly summarize the ongoing debates surrounding the interpretation of morphological variation at Sterkfontein Member 4 before exploring two promising avenues that would deserve specific attention in the future, that is, temporal depth and nonhuman primate diversity.  相似文献   

7.
Although hylobatids are the most speciose of the living apes, their morphological interspecies and intraspecies variation remains poorly understood. Here, we assess mandibular shape variation in two species of Hylobates, white-handed (Hylobates lar) and black-handed (Hylobates agilis) gibbons. Using 71 three-dimensional landmarks to quantify mandibular shape, interspecies and intraspecies variation and geographic patterns of mandibular shape are examined in a mixed sex sample of adult H. lar and H. agilis through generalized Procrustes analysis, Procrustes analysis of variance, and principal components analysis. We find that relative to H. agilis, H. lar exhibits a higher amount of variation in mandibular shape. Both species demonstrate similar allometric patterns in mandibular shape. We also highlight a geographic pattern in mandibular shape variation. Compared to mainland hylobatids, insular hylobatids have relatively lower, more posteriorly oriented, and anteroposteriorly wider mandibular condyles, with an increased distance between the condyles and the coronoid processes. This geographic pattern could reflect differences in functional demands on the mandible during mastication and/or could be driven by factors often associated with evolutionary pressures of island populations relative to mainland populations. The findings of this study highlight how little is known about Hylobates morphological variation and how important this is for using Hylobates to help interpret the primate fossil record. Understanding interspecific and intraspecific variation in extant primates is vital to interpreting variation in the primate fossil record.  相似文献   

8.
Aim To infer evolutionary relationships within the genus Phyllocladus and among its close relatives by phylogenetic analysis of DNA sequences. Interpret the inferred relationships in association with the fossil record to examine the origin and diversification of the genus. Location Australasia. Methods Phylogenetic analyses of rbcL, matK and internal transcribed spacer (ITS) sequences representing all of the extant species of Phyllocladus and a selection of outgroups from Podocarpaceae and Araucariaceae. Results The rbcL and matK sequences exhibit little variation within Phyllocladus, but ally its members to Podocarpaceae although its immediate sister remains unclear. The ITS sequences resolve all five species of Phyllocladus and two intraspecific ecotypes of P. alpinus. Main conclusions Phyllocladus forms a distinct lineage that diverged early in the evolutionary history of Podocarpaceae. The fossil record indicates that the genus was more widely distributed and morphologically diverse during the early Tertiary than at present. Although of Mesozoic origin, the level of sequence variation within Phyllocladus suggests that the extant species radiated during the late Tertiary c. 6.3 ± 0.9 Ma. New Zealand is the present centre of species diversity.  相似文献   

9.
It is demonstrated in this paper that before we can hope to formulate phylogenetic relationships between and amongst fossil hominoid material it is first necessary to sex the material accurately. In order to determine whether the morphological and morphometrical variability seen in fossil specimens is due to sexual or inter species dimorphism, it is necessary to calibrate fossil specimens against extant hominoid species' morphologies. Only after fossil specimens have been sexed is it possible to differentiate between morphologies that are related to sex and those that are species specific. This will help reduce fossil misallocation. A morphometric analysis of extant and fossilProconsul hominoid material is presented. Each fossil specimen has been sexed according to symplesiomorphic sex morphologies as defined in this paper. After the fossil specimens have been sexed they are analyzed using multivariate statistics. The identification of differing sex patterns within the specimens examined here suggests that a new species ofProconsul may have to be considered.  相似文献   

10.
The origin and evolution of angiosperms can be unravelled by using fossil records to determine first occurrences and phytogeographic histories of plant families and genera. Many angiosperm families, for example the Onagraceae, have a poor macrofossil record, but are more common in palynological records. Modern Onagraceae produce pollen clearly distinct from that of other angiosperms. Combined morphological features obtained by use of light and scanning electron microscopy have enabled assignment of fossil Onagraceae pollen to extant genera, and therefore tracing of the origin and past distributions of extant Onagraceae lineages. We studied a Miocene palynoflora from the Daotaiqiao Formation of north-east China. Using the single-grain technique, we examined individual Onagraceae pollen/tetrads using both light and scanning electron microscopy. Fossil Onagraceae pollen is more frequent than macrofossil remains, but is still rare, and usually represented by a single taxon in palynological samples. Remarkably, samples from the Miocene of north-east China contain five different species: two of Circaea, one of Epilobium, and two of Ludwigia. Such a large number of Onagraceae taxa from a single palynoflora is unknown elsewhere. Whereas Ludwigia pollen is known from Cenozoic sediments of the northern hemisphere, the Circaea pollen is the first fossil pollen assignable to this extant genus. This is also the first fossil record of Epilobium from China. Although the young geological age of this sample does not enable consideration of time of origin for the genera encountered, the co-occurrence of Circaea, Epilobium, and Ludwigia in the mid to late-Miocene of East Asia sheds some light on their phytogeographic histories.  相似文献   

11.
Recently, nomina such as “Homo heidelbergensis” and “H. ergaster” have been resurrected to refer to fossil hominids that are perceived to be specifically distinct from Homo sapiens and Homo erectus. This results in a later human fossil record that is nearly as speciose as that documenting the earlier history of the family Hominidae. However, it is agreed that there remains only one extant hominid species: H. sapiens. Has human taxonomic diversity been significantly pruned over the last few hundred millennia, or have the number of taxa been seriously overestimated? To answer this question, the following null hypothesis is tested: polytypism was established relatively early and the species H. erectus can accommodate all spatio-temporal variation from ca. 1.7 to 0.5 Ma. A disproof of this hypothesis would suggest that modern human polytypism is a very recent phenomenon and that speciation throughout the course of human evolution was the norm and not the exception. Cranial variation in a taxonomically mixed sample of fossil hominids, and in a modern human sample, is analyzed with regard to the variation present in the fossils attributed to H. erectus. The data are examined using both univariate (coefficient of variation) and multivariate (determinant) analyses. Employing randomization methodology to offset the small size and non-normal distribution of the fossil samples, the CV and determinant results reveal a pattern and degree of variation in H. erectus that most closely approximates that of the single species H. sapiens. It is therefore concluded that the null hypothesis cannot be rejected. © 1993 Wiley-Liss, Inc.  相似文献   

12.
The olive shells of the genus Amalda comprises readily recognized species of marine neogastropod mollusks found around the world. The New Zealand Amalda fauna has particular notoriety as providing one of the best demonstrations of evolutionary morphological stasis, a prerequisite for punctuated equilibrium theory. An excellent fossil record includes representation of three extant endemic Amalda species used to explore patterns of form change. However, the phylogenetic relationship of the New Zealand Amalda species and the timing of their lineage splitting have not been studied, even though these would provide valuable evidence to test predictions of punctuated equilibrium. Here, we use entire mitogenome and long nuclear rRNA gene cassette data from 11 Amalda species, selected from New Zealand and around the world in light of high rates of endemicity among extant and fossil Amalda. Our inferred phylogenies do not refute the hypothesis that New Zealand Amalda are a natural monophyletic group and therefore an appropriate example of morphological stasis. Furthermore, estimates of the timing of cladogenesis from the molecular data for the New Zealand group are compatible with the fossil record for extant species and consistent with expectations of punctuated equilibrium.  相似文献   

13.
Synodontis catfish are a species‐rich, tropical pan‐African genus that predominately occur in fluviatile environments, but which also form a small radiation within Lake Tanganyika (LT). Here we estimate Synodontis relationships, based on mitochondrial and nuclear DNA, greatly expanding previous sampling. Data were analysed using different methods of phylogenetic inference: Bayesian (also testing compositional heterogeneity), likelihood and parsimony, in order to investigate biogeographic history and the extent of intralacustrine speciation within this group. Bayesian‐relaxed clock analyses were used to estimate timings of radiations. Our analyses reveal a single origin of the LT flock with the inclusion of the nonendemic S. victoriae, and that these taxa evolved relatively recently (5.5 Ma), considerably later than the formation of LT (9–12 Ma). Two internal endemic clades diversified at a similar time (2–2.5 Ma), corresponding to a period of climate change, when lake levels dropped. We find evidence for a further species flock, composed of riverine southern African taxa, the diversification of which is very rapid, 0.8 Ma (95% HPD: 0.4–1.5) and infer a similar scenario for the diversification of this flock to southern African serrachromine cichlids in that they radiated in the now extinct lake Makgadikgadi. We also reveal that the biogeographic history of Synodontis catfish is more complex than previously thought, with nonmonophyletic geographic species groupings.  相似文献   

14.
The Pterasteridae comprises a diversified group of extant largely deep-sea starfishes. Generic diagnoses have been based classically on soft tissue characters and skeletal architecture. A preliminary phylogeny of sixteen extant species is here worked out by cladistic analysis. The resulting tree suggests monophyly of extant genera and the validity of dissociated plates for identification of genera. Fossil remains of Pterasteridae are here described for the first time. By comparison with extant species, all the skeletal remains from the lower Upper Campanian of Belgium and from the lower Maastrichtian of Germany are tentatively assigned to the genusPteraster. The fossil record of starfishes is poor, but the present Late Cretaceous pterasterids provide one more piece of evidence of the high diversity of starfishes during the Mesozoic. Known Late Cretaceous and Paleogene fossils are broadly similar, which suggests the end-Cretaceous extinction event did not cause major turnover in asteroid faunal composition. As suggested for other starfish groups, both the fossil record of deep-sea Pterasteridae in shelf settings and tree topology imply an onshore-offshore evolutionary trend.   相似文献   

15.
Here we report on two kinds of cercopithecid fossil monkeys (Cercopithecinae and Colobinae) from the early to middle Pleistocene sediments of the Chochen (=Tsochen) area (Tsailiao-chi or Shinhua Hill), southern Taiwan. The fossil specimens include the first fossil record of colobine monkeys from Taiwan, where only macaque monkeys now occur. All cercopithecine fossils were identified as Macaca cf. Macaca cyclopis, the extant Taiwan macaque, except for one extremely large isolated upper molar, which may belong to another macaque species. On the other hand, all colobine specimens fall within the size variation of extant and extinct Rhinopithecus, but its specific status cannot be determined because of the scantiness of the fossil material. In Taiwan, Rhinopithecus presumably became extinct in the late Pleistocene, probably owing to global cooling and vegetation change, whereas macaques, which are of almost the same body size as Rhinopithecus, survived as M. cyclopis to the present. The contrasting history of survival between the two kinds of monkeys may be due to ecological/behavioral differences between them or as a result of accidental events that occurred in the Pleistocene of Taiwan.  相似文献   

16.
Fossil Bovidae constitute one of the most significant proxy records for evolutionary and palaeoecological change in Africa. Tragelaphus nakuae is a regularly encountered antelope in the East African Plio‐Pleistocene, and is a common component of hominin faunas. As previously understood, this species ranged for almost 2 million years, encompassed a large range of morphological variation, exhibited relative stasis in the face of environmental perturbations, and left no known living descendants. I here review and revise the fossil record of this tragelaphin bovid, finding that specimens older than ~2.8 Mya and previously attributed to T. nakuae or a close form are in fact referable to a distinct, but ancestral, species. This new interpretation adds these fossil tragelaphins to the body of evidence supporting major faunal turnover occurring around 2.8 Mya in concert with global climatic change. I also document morphological changes that occur through the duration of T. nakuae, particularly after 2.3 Mya. These taxonomic revisions allow for refined biochronological estimates for several East African Plio‐Pleistocene sites and specimen assemblages of uncertain age. A phylogenetic analysis suggests that the T. nakuae lineage is related to the extant bongo (Tragelaphus eurycerus), relating this living but enigmatic forest antelope to the fossil record. One resulting palaeoecological hypothesis is that the bongo's modern fragmented range represents the relicts of a much more widely distributed late Pliocene African forest belt. This study highlights the importance of specimen‐based approaches for elucidating the pattern and timing of major evolutionary events. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 699–711.  相似文献   

17.
Because of the greater morphological distances among them, genera should be more robustly recognizable in the fossil record than species are. But there are clearly upper as well as lower bounds to their species inclusivity. Currently, the vast majority of fossils composing the large and rapidly expanding paleoanthropological record are crammed into one of two genera (Australopithecus vs Homo), expanding the latter, especially, far beyond any reasonable morphological or phylogenetic limits. This excessive inclusivity obscures both diversity and the complexities of phylogenetic structure within the hominid family.  相似文献   

18.
Population systematics of chimpanzees using molar morphometrics   总被引:2,自引:1,他引:1  
When dental morphological variation within extant species is used as a guideline to partition variation within fossil samples into species, the underlying assumption is that fossil species are equivalent to extant species. This is the case despite the fact that dental morphology, which is commonly used to differentiate fossil species, is rarely used to differentiate extant species. Aspects of external morphology, ecology, behavior, breeding patterns, and molecular structure that are used to delineate living species are generally not available for fossils. In this paper, the utility of dental evidence for sorting fossil samples into species is evaluated by testing whether molar occlusal morphology is capable of sorting populations of Pan into the species and subspecies already well-established by nondental evidence. The dentitions of 341 chimpanzee individuals, sampled from regions throughout equatorial Africa, were sorted into 16 populations using rivers to demarcate the boundaries between populations. Digital-imaging software was used to measure 15 traits on the occlusal surface of each upper molar and 19 on each lower molar. After applying size adjustments, size-transformed and untransformed variables were subjected to discriminant analysis, with separate analyses carried out for each molar type. Results indicate that populations of Pan troglodytes and Pan paniscus are well differentiated at all molar positions. Populations of P. t. verus are distinct from other populations of P. troglodytes. Populations of P. t. troglodytes and P. t. schweinfurthii show close dental similarity. A distinct population is recognized at the Nigeria-Cameroon border, indicating the presence of P. t. vellerosus. The concordance between the patterns of diversity recognized by this study and other molecular and nonmolecular studies indicates that paleontological species that are similar to species of Pan in terms of size and patterns of diversification may be differentiated using molar morphology.  相似文献   

19.
Africa is home today to only a single breeding species of penguin, Spheniscus demersus (black‐footed penguin), which is endangered with extinction. Spheniscus demersus has been the only breeding species of penguin to share African coastlines with humans over the last 400 000 years. Interestingly, African penguin diversity was substantially higher before the evolution of archaic humans. The fossil record indicates that a diverse assemblage of penguin species inhabited the southern African coasts for much of the Neogene. Previous excavations have identified four distinct species in Early Pliocene coastal marine deposits. Here we extend this pattern of high diversity and report the oldest record of penguins from Africa. Seventeen penguin specimens were identified from the Saldanha Steel locality, revealing the presence of at least four distinct species in South Africa during the Miocene. The largest of these species reached the size of the extant Aptenodytes patagonicus (king penguin), whereas the smallest was approximately the size of the smallest extant penguin Eudyptula minor (little blue penguin). Recovery of Miocene penguin remains is in accordance with earlier predictions of multiple pre‐Pliocene colonizations of Africa and supports a higher level of ecological diversity amongst African penguins in the past. © 2013 The Linnean Society of London  相似文献   

20.
Abstract: We describe avian remains from Novopskov, a new middle Eocene marine locality in Ukraine. The fossils constitute the most substantial collection of Palaeogene bird bones from Eastern Europe and contribute to a better knowledge of the Paratethyan seabird fauna. Most of the specimens belong to Pelagornithidae (bony‐toothed birds), and two species of very different size can be distinguished. The larger of these is tentatively referred to Dasornis sp., the smaller to Odontopteryx toliapica. The specimens include skeletal elements that were not described for Palaeogene bony‐toothed birds and document previously unknown morphological differences between Palaeogene and Neogene Pelagornithidae. It is argued that the purported crane Eobalearica tugarinovi, from the middle Eocene of Kyrgyzstan, is probably also a bony‐toothed bird. A new genus and species of small Gaviiformes, Colymbiculus udovinchenkoi, is described, which is the earliest fossil record of a loon from Europe, preceding the next oldest specimens by more than 10 myr. The Ukrainian fossils document profound differences between middle Eocene and extant marine avifaunas of Europe, and whereas the middle Eocene Paratethyan avifauna appears to have been similar to that of the North Sea with regard to pelagornithid diversity, the absence of prophaethontids and relative abundance of Gaviiformes may indicate faunistic differences concerning the remaining seabirds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号