首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
以苹果M9T337幼苗为试材进行水培试验,采用15N和13C同位素示踪技术,研究不同供钾水平(0、3、6、9、12 mmol·L-1,分别以K0、K1、K2、K3、K4表示)对M9T337幼苗生长、光合特性与15N、13C吸收利用的影响.结果表明: K2处理M9T337幼苗各器官干质量、根系长度、根系表面积、根尖数和根系活力均显著高于其他处理.叶片净光合速率(Pn)随着供钾水平的升高先上升后下降,在K2处理时达到最高值,为15.5 μmol CO2·m-2·s-1.处理30 d后,硝酸还原酶(NR)和碳代谢酶活性均以K2处理最高,K0处理最低.随着供钾水平的提高,各处理幼苗的13C积累量呈先升高后降低的趋势,且在K2处理时各器官13C分配率最均衡.各处理间15N吸收量和利用率差异显著,K2处理下幼苗的15N吸收量和利用率最高,分别为16.11 mg和17.9%,是K0处理的3.0倍.因此,钾素供应过低或过高均抑制幼苗根系生长和叶片光合作用,不利于植株碳氮吸收,而适宜的钾素供应水平可以提高根系活力和净光合速率,增强硝酸还原酶(NR)和碳代谢酶活性,从而促进碳氮代谢.  相似文献   

2.
以6年生‘烟富3’/M26/平邑甜茶苹果为试材,采用C、N双标记技术,研究在果实膨大后期用不同尿素浓度水溶液(N 0%、0.6%、1.2%、1.8%、2.4%,分别用CK、N1、N2、N3、N4表示)涂抹果实周围20 cm范围内叶片对叶片13C同化能力及13C光合产物、15N向果实转移分配的影响.结果表明: 随着尿素浓度的增加,叶片的叶绿素含量、氮含量、光合速率、山梨醇和蔗糖含量、6-磷酸山梨醇脱氢酶(S6PDH)和蔗糖磷酸合酶(SPS)活性及13C同化能力均先升高后降低,均以1.8%尿素涂抹处理最高,清水对照最低.13C自留量(自身叶片+自身新梢)以清水对照最高,为81.6%,1.8%尿素涂抹处理最低,为63.5%.向外输出的13C光合产物主要分布在标记果实,其次是未标记多年生枝,未标记叶片最低.果实13C吸收量随着尿素浓度增加呈先升高后降低趋势,以1.8%尿素涂抹处理最高(1.21 mg·g-1),清水对照最低(0.51 mg·g-1);果实15N吸收量随着尿素浓度增加呈持续升高趋势.表明尿素水溶液叶施可不同程度地提高叶片光合产物和氮素向果实转移分配的能力,以1.8%尿素涂抹处理叶片光合产物向果实转移分配能力最强,同时避免了过多的氮素向果实的输入.  相似文献   

3.
以6年生‘烟富3’/M26/平邑甜茶苹果为试材,采用C、N双标记技术,研究在果实膨大后期用不同尿素浓度水溶液(N 0%、0.6%、1.2%、1.8%、2.4%,分别用CK、N1、N2、N3、N4表示)涂抹果实周围20 cm范围内叶片对叶片13C同化能力及13C光合产物、15N向果实转移分配的影响.结果表明: 随着尿素浓度的增加,叶片的叶绿素含量、氮含量、光合速率、山梨醇和蔗糖含量、6-磷酸山梨醇脱氢酶(S6PDH)和蔗糖磷酸合酶(SPS)活性及13C同化能力均先升高后降低,均以1.8%尿素涂抹处理最高,清水对照最低.13C自留量(自身叶片+自身新梢)以清水对照最高,为81.6%,1.8%尿素涂抹处理最低,为63.5%.向外输出的13C光合产物主要分布在标记果实,其次是未标记多年生枝,未标记叶片最低.果实13C吸收量随着尿素浓度增加呈先升高后降低趋势,以1.8%尿素涂抹处理最高(1.21 mg·g-1),清水对照最低(0.51 mg·g-1);果实15N吸收量随着尿素浓度增加呈持续升高趋势.表明尿素水溶液叶施可不同程度地提高叶片光合产物和氮素向果实转移分配的能力,以1.8%尿素涂抹处理叶片光合产物向果实转移分配能力最强,同时避免了过多的氮素向果实的输入.  相似文献   

4.
以东北森林两种典型的阔叶树种风力传播种子——花曲柳和色木槭种子为研究对象,通过室内15N尿素浸泡试验和温室盆栽试验,设置4个浓度(0、0.05、0.1和0.2 g·L-1)、3个浸泡时间(4、8和12 d)与4个叶期(2、4、6和8叶)处理,研究种子浸泡浓度、浸泡时间和幼苗叶期对种子和幼苗15N富集的影响.结果表明: 浸泡浓度和浸泡时间对两树种种子δ15N值均有显著的正反馈作用,高浓度和长时间(0.2 g·L-1+12 d)更有利于种子15N总量的富集,花曲柳和色木槭种子15N同位素最大富集倍数的浸泡浓度和浸泡时间组合分别为0.1 g·L-1+(4、8 d)和0.05 g·L-1+(4、8 d);δ15N值稀释率随幼苗株高的增加先急剧减少(2~6叶)后趋于稳定,幼苗从8叶开始叶片15N总量降低,表明6叶幼苗更适合追踪幼苗的来源;幼苗叶片δ15N值与种子浸泡浓度、浸泡时间和种子的δ15N值呈显著正相关.花曲柳和色木槭种子及幼苗均能成功富集到15N信号,采用0.1 g·L-1+8 d+6叶组合最适合追踪花曲柳和色木槭种子和幼苗.  相似文献   

5.
以东北森林两种典型的阔叶树种风力传播种子——花曲柳和色木槭种子为研究对象,通过室内15N尿素浸泡试验和温室盆栽试验,设置4个浓度(0、0.05、0.1和0.2 g·L-1)、3个浸泡时间(4、8和12 d)与4个叶期(2、4、6和8叶)处理,研究种子浸泡浓度、浸泡时间和幼苗叶期对种子和幼苗15N富集的影响.结果表明: 浸泡浓度和浸泡时间对两树种种子δ15N值均有显著的正反馈作用,高浓度和长时间(0.2 g·L-1+12 d)更有利于种子15N总量的富集,花曲柳和色木槭种子15N同位素最大富集倍数的浸泡浓度和浸泡时间组合分别为0.1 g·L-1+(4、8 d)和0.05 g·L-1+(4、8 d);δ15N值稀释率随幼苗株高的增加先急剧减少(2~6叶)后趋于稳定,幼苗从8叶开始叶片15N总量降低,表明6叶幼苗更适合追踪幼苗的来源;幼苗叶片δ15N值与种子浸泡浓度、浸泡时间和种子的δ15N值呈显著正相关.花曲柳和色木槭种子及幼苗均能成功富集到15N信号,采用0.1 g·L-1+8 d+6叶组合最适合追踪花曲柳和色木槭种子和幼苗.  相似文献   

6.
以15年生红将军/八棱海棠为试材,运用15N同位素示踪技术,设置单施尿素(CK)及尿素配施不同用量黄腐酸处理(黄腐酸用量分别为75、150、300和450 kg·hm-2,分别以NF1、NF2、NF3和NF4表示),研究不同黄腐酸用量对苹果植株15N-尿素吸收、利用、残留、损失及果实产量和品质的影响.结果表明: 至果实成熟期,苹果根系、一年生枝和叶片的Ndff值(植株器官从肥料中吸收分配到的15N量对该器官全氮量的贡献率)均为NF3>NF4>NF2>NF1>CK,且各处理间差异显著.植株全氮量和15N吸收量均以NF3处理最大,其次为NF4处理,CK处理最低.与CK处理相比,NF1、NF2、NF3和NF4处理15N利用率分别提高了14.2%、33.5%、64.2%和50.0%,而15N损失率分别降低了9.1%、18.5%、37.1%和28.7%.不同处理土壤15N残留量不同.配施黄腐酸处理0~60 cm土层15N残留量显著高于CK处理,其中以NF3处理最多,而在60~100 cm土层显著低于CK处理.NF3处理单株产量和纯收益较CK处理增幅最大,分别为15.8%和20.2%,其次为NF4处理,同时,NF3处理果实硬度、可溶性固形物含量和糖酸比均达到最高水平.通过对果实产量和氮素利用率与黄腐酸施用量进行拟合分析,得出本试验条件下适宜的黄腐酸用量为326.41~350.61 kg·hm-2.  相似文献   

7.
以15年生红将军/八棱海棠为试材,运用15N同位素示踪技术,设置单施尿素(CK)及尿素配施不同用量黄腐酸处理(黄腐酸用量分别为75、150、300和450 kg·hm-2,分别以NF1、NF2、NF3和NF4表示),研究不同黄腐酸用量对苹果植株15N-尿素吸收、利用、残留、损失及果实产量和品质的影响.结果表明: 至果实成熟期,苹果根系、一年生枝和叶片的Ndff值(植株器官从肥料中吸收分配到的15N量对该器官全氮量的贡献率)均为NF3>NF4>NF2>NF1>CK,且各处理间差异显著.植株全氮量和15N吸收量均以NF3处理最大,其次为NF4处理,CK处理最低.与CK处理相比,NF1、NF2、NF3和NF4处理15N利用率分别提高了14.2%、33.5%、64.2%和50.0%,而15N损失率分别降低了9.1%、18.5%、37.1%和28.7%.不同处理土壤15N残留量不同.配施黄腐酸处理0~60 cm土层15N残留量显著高于CK处理,其中以NF3处理最多,而在60~100 cm土层显著低于CK处理.NF3处理单株产量和纯收益较CK处理增幅最大,分别为15.8%和20.2%,其次为NF4处理,同时,NF3处理果实硬度、可溶性固形物含量和糖酸比均达到最高水平.通过对果实产量和氮素利用率与黄腐酸施用量进行拟合分析,得出本试验条件下适宜的黄腐酸用量为326.41~350.61 kg·hm-2.  相似文献   

8.
以6年生库尔勒香梨为材料,用13C脉冲标记技术研究了150、300、450 kg N·hm-2(分别用N1、N2、N3表示)3个施氮水平下树体各器官生物量、碳积累量以及13C同化物的吸收分配特性。结果表明: 库尔勒香梨树体整株的生物量、碳积累量、13C固定量以及叶片的同化能力均随着施氮水平的提高而增加;根冠比则随施氮水平的提高而降低。生殖器官果实的生物量、碳积累量在N2处理下最高。树体各器官13C含量和分配率随施氮量的增加发生动态变化。新梢旺长期,叶片和根系对光合同化物的竞争能力较强,且13C分配率均为N1处理下最高;果实膨大期和成熟期,叶片和果实的竞争能力较强,叶片13C含量和分配率在N3处理下最高,而果实13C含量和分配率则在N2处理下最大。综上,根据不同施氮水平各器官对碳同化物的吸收分配特征,以提高产量为目标,建议6年树龄的库尔勒香梨果园最佳施氮量为300 kg·hm-2。  相似文献   

9.
以霍格兰营养液为培养基质,采用15N同位素示踪技术,研究不同浓度15NO3--N (0、2.5、5、10和20 mmol·L-1,分别以N0、N1、N2、N3和N4表示)对平邑甜茶幼苗生长、光合作用、15N吸收、利用及分配的影响.结果表明:与其他处理相比,N2处理幼苗叶绿素含量、叶面积及各器官干质量最大.叶片净光合速率(Pn)随15NO3--N浓度的增加显著增大,但15NO3--N浓度超过N2处理后Pn略有下降.处理20 d时,N2处理幼苗根系活力最大,根系长度、根系总表面积和根尖数也显著高于其他处理.各处理间15N分配率差异显著,N2处理幼苗各器官间15N分配率最均衡,15N利用率也较高;随15NO3--N浓度增加,各处理幼苗全氮量和15N吸收量呈先升高后降低的趋势,且在N2处理时最大,分别为103.77和21.57 mg.处理12 d后,叶片硝酸还原酶(NR)活性以N2处理最高,N4处理最低,至第16天时,N4处理较N2处理降低了84.9%.因此,15NO3--N供应过低抑制幼苗光合作用及氮素吸收,15NO3--N供应过高则抑制幼苗体内硝态氮同化及根系生长,均不利于苹果幼苗生长及氮素营养吸收利用,适量供氮有利于苹果幼苗的生长、光合作用的提高,以及氮素的吸收、利用和分配.  相似文献   

10.
以霍格兰营养液为培养基质,采用15N同位素示踪技术,研究不同浓度15NO3--N (0、2.5、5、10和20 mmol·L-1,分别以N0、N1、N2、N3和N4表示)对平邑甜茶幼苗生长、光合作用、15N吸收、利用及分配的影响.结果表明:与其他处理相比,N2处理幼苗叶绿素含量、叶面积及各器官干质量最大.叶片净光合速率(Pn)随15NO3--N浓度的增加显著增大,但15NO3--N浓度超过N2处理后Pn略有下降.处理20 d时,N2处理幼苗根系活力最大,根系长度、根系总表面积和根尖数也显著高于其他处理.各处理间15N分配率差异显著,N2处理幼苗各器官间15N分配率最均衡,15N利用率也较高;随15NO3--N浓度增加,各处理幼苗全氮量和15N吸收量呈先升高后降低的趋势,且在N2处理时最大,分别为103.77和21.57 mg.处理12 d后,叶片硝酸还原酶(NR)活性以N2处理最高,N4处理最低,至第16天时,N4处理较N2处理降低了84.9%.因此,15NO3--N供应过低抑制幼苗光合作用及氮素吸收,15NO3--N供应过高则抑制幼苗体内硝态氮同化及根系生长,均不利于苹果幼苗生长及氮素营养吸收利用,适量供氮有利于苹果幼苗的生长、光合作用的提高,以及氮素的吸收、利用和分配.  相似文献   

11.
以‘嘎啦/八棱海棠’为试材,借助15N同位素示踪技术,研究了撒施(T1)、滴灌施氮(T2)和渗灌施氮(T3)对嘎啦苹果氮素吸收利用、分配特性和产量品质的影响,以期进一步完善苹果园水肥一体化技术,挖掘提高氮素利用率的途径。结果表明: T3处理苹果叶片的叶面积、叶绿素和氮含量显著高于T1和T2处理。各时期土壤矿化氮(Nmin)含量在20~40 cm土层表现为T3>T2>T1处理,在0~20 cm土层表现为T2>T3>T1处理。同一器官的Ndff值(树体各器官从肥料中吸收到的15N占该器官全氮量的比例)在各时期均以T3处理最高,T2其次,T1处理最低。果实成熟期的树体15N利用率表现为T3>T2>T1处理,其中T3处理的树体15N利用率为24.2%,分别是T2和T1处理的1.19和1.65倍。果实成熟期T1处理的15N分配率在营养器官最高,T2处理在贮藏器官最高,T3处理在生殖器官最高。各处理的单果重、产量、可溶性固形物、硬度、可溶性糖及糖酸比均以T3处理最高,T2其次,T1处理最低。渗灌施氮处理显著促进了嘎啦苹果树体叶片生长和氮素利用,并提高了果实产量和品质。  相似文献   

12.
为明确脱甲河溶存CH4关键产生途径,明晰水系碳同位素组成及其分布特征,为小流域CH4排放估算和减排提供数据支撑.利用双层扩散模型法估算了CH4浓度和传输通量,研究了周年内脱甲河4级河段(S1~S4)水体CH4通量的时空分布及其主控环境因子;运用稳定同位素方法探究了溶存CH4关键产生途径,分析了溶解CH4、悬浮颗粒物和沉积物有机质δ13C分布特征.结果表明: 水体pH均值为(7.27±0.03),各河段四季差异均显著;溶解氧(DO)在0.43~13.99 mg·L-1内变化,S1河段DO浓度最高且夏、秋季差异显著,其他河段均为冬与春、夏、秋季差异显著;可溶性有机碳(DOC)变化范围是0.34~8.32 mg·L-1,由S1至S4河段总体呈递增趋势;水体电导率(EC)和氧化还原电位(ORP)变化范围分别是17~436 μS·cm-1和-52.30~674.10 mV,各河段差异明显;铵态氮(NH4+-N)、硝态氮(NO3--N)浓度分别在0.30~1.35(平均0.90±0.10) mg·L-1和0.82~2.45 (平均1.62±0.16) mg·L-1内变化.溶存CH4浓度和传输通量变化范围分别是0~5.28 (平均0.46±0.06) μmol·L-1和-0.34~619.72 (平均53.88±7.15) μg C·m-2·h-1;均存在时空变化且变异规律相似,为春季>冬季>夏季>秋季,S2>S3>S4>S1.通量与水体铵态氮和DOC浓度均呈显著正相关.各级河段均以乙酸发酵产甲烷途径为主导,但不同河段差异明显,乙酸发酵途径产CH4贡献率以S1河段最高(87%),其次为S4(81%),S2、S3分别达到78%和76%.溶存CH4、悬浮颗粒物和沉积物有机质的δ13C均值分别为-41.64‰±1.91‰、-14.07‰±1.06‰和-26.20‰±1.02‰,溶存甲烷δ13C与沉积物有机质的δ13C呈显著正相关,与其传输通量呈极显著负相关.  相似文献   

13.
研究平邑甜茶幼苗NO3--N吸收和利用特性对不同供钾水平的响应,旨在明确钾肥对氮肥吸收利用的影响,从而为果园科学施肥提供理论依据.以平邑甜茶幼苗为材料进行砂培试验,设置K0、K1、K2、K3、K4、K5、K6 7个钾浓度处理,分别相当于0、2、4、6、8、10、12 mmol·L-1 K+,运用15N同位素示踪技术和非损伤扫描离子选择电极技术,测定了不同供钾水平下平邑甜茶的氮素吸收和利用情况.结果表明: K3处理平邑甜茶幼苗根系活力、硝酸还原酶活性以及根系形态指标均显著高于其他处理.与其他处理相比,K3处理根、茎、叶从肥料中吸收分配到的15N 量对该器官全氮量的贡献率(Ndff)均达到最高,分别为K0处理的1.36、1.33和1.47倍.随供钾水平的增加,植株氮素利用率呈现先增高后降低的趋势,且在K3处理时最大,为23.3%,是K0处理的3.04倍.非损伤微测技术结果显示,K3处理时,平邑甜茶根系对NO3-有强烈吸收且内流速度达到最大,为19.34 pmol·cm-2·s-1;在缺钾(K0)和高钾(K6)处理时有明显外排趋势.因此,钾的亏缺或过量均抑制氮素的吸收和利用,适当供钾能够促进幼苗根系生长,增强硝酸还原酶活性,从而促进平邑甜茶对氮素的吸收.  相似文献   

14.
田歌  王芬  彭玲  何流  姜远茂  葛顺峰 《生态学杂志》2017,28(7):2254-2260
研究平邑甜茶幼苗NO3--N吸收和利用特性对不同供钾水平的响应,旨在明确钾肥对氮肥吸收利用的影响,从而为果园科学施肥提供理论依据.以平邑甜茶幼苗为材料进行砂培试验,设置K0、K1、K2、K3、K4、K5、K6 7个钾浓度处理,分别相当于0、2、4、6、8、10、12 mmol·L-1 K+,运用15N同位素示踪技术和非损伤扫描离子选择电极技术,测定了不同供钾水平下平邑甜茶的氮素吸收和利用情况.结果表明: K3处理平邑甜茶幼苗根系活力、硝酸还原酶活性以及根系形态指标均显著高于其他处理.与其他处理相比,K3处理根、茎、叶从肥料中吸收分配到的15N 量对该器官全氮量的贡献率(Ndff)均达到最高,分别为K0处理的1.36、1.33和1.47倍.随供钾水平的增加,植株氮素利用率呈现先增高后降低的趋势,且在K3处理时最大,为23.3%,是K0处理的3.04倍.非损伤微测技术结果显示,K3处理时,平邑甜茶根系对NO3-有强烈吸收且内流速度达到最大,为19.34 pmol·cm-2·s-1;在缺钾(K0)和高钾(K6)处理时有明显外排趋势.因此,钾的亏缺或过量均抑制氮素的吸收和利用,适当供钾能够促进幼苗根系生长,增强硝酸还原酶活性,从而促进平邑甜茶对氮素的吸收.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号