首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A theme emerging during the past few years is that members of the small leucine-rich proteoglycan gene family affect cell growth by interacting with multiple receptor tyrosine kinases (RTKs), mostly by a physical down-regulation of the receptors, thereby depriving tumor cells of pro-survival signals. Decorin binds and down-regulates several RTKs, including Met, the receptor for hepatocyte growth factor. Here we demonstrate that decorin blocks several biological activities mediated by the Met signaling axis, including cell scatter, evasion, and migration. These effects were mediated by a profound down-regulation of noncanonical β-catenin levels. In addition, Myc, a downstream target of β-catenin, was markedly down-regulated by decorin, whereas phosphorylation of Myc at threonine 58 was markedly induced. The latter is known to destabilize Myc and target it for proteasomal degradation. We also discovered that systemic delivery of decorin using three distinct tumor xenograft models caused down-regulation of Met and a concurrent suppression of β-catenin and Myc levels. We found that decorin protein core labeled with the near infrared dye IR800 specifically targeted the tumor cells expressing Met. Even 68-h post-injection, decorin was found to reside within the tumor xenografts with little or no binding to other tissues. Collectively, our results indicate a role for a secreted proteoglycan in suppressing the expression of key oncogenic factors required for tumor progression.  相似文献   

2.
3.
Decorin is not only a regulator of matrix assembly but also a key signaling molecule that modulates the activity of tyrosine kinase receptors such as the epidermal growth factor receptor (EGFR). Decorin evokes protracted internalization of the EGFR via a caveolar-mediated endocytosis, which leads to EGFR degradation and attenuation of its signaling pathway. In this study, we tested if systemic delivery of decorin protein core would affect the biology of an orthotopic squamous carcinoma xenograft. After tumor engraftment, the animals were given intraperitoneal injections of either vehicle or decorin protein core (2.5-10 mg kg(-1)) every 2 days for 18-38 days. This regimen caused a significant and dose-dependent inhibition of the tumor xenograft growth, with a concurrent decrease in mitotic index and a significant increase in apoptosis. Positron emission tomography showed that the metabolic activity of the tumor xenografts was significantly reduced by decorin treatment. Decorin protein core specifically targeted the tumor cells enriched in EGFR and caused a significant down-regulation of EGFR and attenuation of its activity. In vitro studies showed that the uptake of decorin by the A431 cells was rapid and caused a protracted down-regulation of the EGFR to levels similar to those observed in the tumor xenografts. Furthermore, decorin induced apoptosis via activation of caspase-3. This could represent an additional mechanism whereby decorin might influence cell growth and survival.  相似文献   

4.
Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) – surprisingly – autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury.  相似文献   

5.
The system of hepatocyte growth factor (HGF) and its receptor c‐Met plays a critical role in tumor invasive growth and metastasis. The mortality rate of colorectal cancer (CRC), one of the most commonly diagnosed malignancies, is increased by it gradual development into metastasis, most frequently in the liver. Overexpression of c‐Met, the protein tyrosine kinase receptor for the HCF/scatter factor, has been implicated in the progression and metastasis of human colorectal carcinoma. In this study, we aimed to investigate the role of c‐Met in CRC liver metastasis and illustrate the clinical impact of regulating HGF/c‐Met signaling in patients with CRC liver metastasis. We found that (I) higher levels of c‐Met expression (mRNA and Protein) in CRC liver metastasis than primary CRC by assessing the patient tissue samples; (II) a positive correlation of c‐Met expression with tumor stages of CRC liver metastasis, as well as c‐Met expression in CRC, live metastasis concurred with regional lymph node metastasis; (III) the clinical impact of downregulation of HGF/c‐Met signaling on the reduction of proliferation and invasion in CRC liver metastasis. Therefore, we demonstrate that the regulation of HGF/c‐Met pathways may be a promising strategy in the treatment of patients with CRC liver metastasis.  相似文献   

6.
The Met tyrosine kinase receptor is a widely expressed molecule which mediates pleiotropic cellular responses following activation by its ligand, hepatocyte growth factor/scatter factor (HGF/SF). In this communication we demonstrate that significant Met degradation is induced by HGF/SF and that this degradation can be blocked by lactacystin, an inhibitor of proteasome activity. We also show that Met is rapidly polyubiquitinated in response to ligand and that polyubiquitinated Met molecules, which are normally unstable, are stabilized by lactacystin. Both HGF/SF-induced degradation and polyubiquitination of Met were shown to be dependent on the receptor possessing intact tyrosine kinase activity. Finally, we found that a normally highly labile 55-kDa fragment of the Met receptor is stabilized by lactacystin and demonstrate that it represents a cell-associated remnant that is generated following the ligand-independent proteolytic cleavage of the Met receptor in its extracellular domain. This truncated Met molecule encompasses the kinase domain of the receptor and is itself tyrosine phosphorylated. We conclude that the ubiquitin-proteasome pathway plays a significant role in the degradation of the Met tyrosine kinase receptor as directed by ligand-dependent and -independent signals. We propose that this proteolytic pathway may be important for averting cellular transformation by desensitizing Met signaling following ligand stimulation and by eliminating potentially oncogenic fragments generated via extracellular cleavage of the Met receptor.  相似文献   

7.
Dysregulation of hepatocyte growth factor (HGF)-induced signaling via its receptor tyrosine kinase Met results in tumor progression and metastasis. To initiate signaling, pro-HGF must be proteolytically activated to reveal a secondary Met binding site within the serine protease-like β-chain of HGF. Although HGF/Met is a large complex, we sought to discover relatively small antagonists that might interfere with this critical Met binding region. Pools of disulfide-constrained random peptide libraries displayed on phage were selected for binding to HGF, ultimately resulting in a disulfide-constrained 15-mer peptide (VNWVCFRDVGCDWVL) termed HB10, which bound to the recombinant human HGF β-chain (HGF β) and competitively inhibited binding to Met with an IC50 of 450 nM. In MDA-MB435 cells, HB10 reduced HGF-dependent Met phosphorylation by 70%, and phosphorylation of downstream kinases AKT and ERK1/ERK2 by 74% and 69%, respectively. Addition of HB10 also inhibited HGF-dependent migration of these cells with an IC50 of ∼ 20 μM. The 2D 1H-NMR structure of HB10 revealed a β-hairpin loop stabilized by the disulfide bond and cross-strand pairing of Trp3 and Trp13. HGF β mutants deficient in Met binding also have reduced HB10 binding, suggesting an overlapping binding site. Notably HB10 did not inhibit full length HGF binding to Met. Thus steric hindrance of the interaction between HGF β domain binding to Met is sufficient for inhibiting full-length HGF-dependent Met signaling and cell migration that is consistent with a noncompetitive inhibitory mechanism of Met signal transduction.  相似文献   

8.
The Met tyrosine kinase receptor and its ligand, hepatocyte growth factor (HGF), play important roles in normal development and in tumor growth and metastasis. HGF-dependent signaling requires proteolysis from an inactive single-chain precursor into an active alpha/beta-heterodimer. We show that the serine protease-like HGF beta-chain alone binds Met, and report its crystal structure in complex with the Sema and PSI domain of the Met receptor. The Met Sema domain folds into a seven-bladed beta-propeller, where the bottom face of blades 2 and 3 binds to the HGF beta-chain 'active site region'. Mutation of HGF residues in the area that constitutes the active site region in related serine proteases significantly impairs HGF beta binding to Met. Key binding loops in this interface undergo conformational rearrangements upon maturation and explain the necessity of proteolytic cleavage for proper HGF signaling. A crystallographic dimer interface between two HGF beta-chains brings two HGF beta:Met complexes together, suggesting a possible mechanism of Met receptor dimerization and activation by HGF.  相似文献   

9.
Hepatocyte growth factor (HGF) is essential for embryogenesis, tissue regeneration and tumour malignancy through the activation of its receptor, c‐Met. We previously demonstrated that HGF α‐chain hairpin–loop, K1 domain and β‐chain are required for c‐Met signalling. The sequential phosphorylation of tyrosine residues, from c‐Met kinase domain to multidocking regions, is required for HGF‐signalling transduction. Herein, we provide evidence that the disconcerted activation of c‐Met tyrosine regions fails to induce biological functions. When human cells were incubated with ‘mouse HGF’, kinase domain activation (i.e. phospho‐Tyr‐1230/34/35) became evident, but the multidocking site (i.e. Tyr‐1349) was not phosphorylated, resulting in unsuccessful induction of migration and mitogenesis. The binding ability of mouse HGF α‐chain, or of β‐chain, to human c‐Met was lower than that of human HGF, as evidenced by HGF–chimera assay. Notably, only four amino acid positions in HGF α‐chain hairpin–loop and K1 domain and six positions in β‐chain differed between human HGF and mouse HGF. The human‐specific amino acids (such as Gln‐95 in hairpin–loop, Arg‐134 in K1 domain and Cys‐561 in β‐chain) may be important for accurate c‐Met assembly and signalling transduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Protein tyrosine phosphorylation is a ubiquitous, fundamental biochemical mechanism that regulates essential eukaryotic cellular functions. The level of tyrosine phosphorylation of specific proteins is finely tuned by the dynamic balance between protein tyrosine kinase and protein tyrosine phosphatase activities. Hepatocyte growth factor receptor (also known as Met), a receptor protein tyrosine kinase, is a major regulator of proliferation, migration, and survival for many epithelial cell types. We report here that receptor-type protein tyrosine phosphatase β (RPTP-β) specifically dephosphorylates Met and thereby regulates its function. Expression of RPTP-β, but not other RPTP family members or catalytically inactive forms of RPTP-β, reduces hepatocyte growth factor (HGF)-stimulated Met tyrosine phosphorylation in HEK293 cells. Expression of RPTP-β in primary human keratinocytes reduces both basal and HGF-induced Met phosphorylation at tyrosine 1356 and inhibits downstream MEK1/2 and Erk activation. Furthermore, shRNA-mediated knockdown of endogenous RPTP-β increases basal and HGF-stimulated Met phosphorylation at tyrosine 1356 in primary human keratinocytes. Purified RPTP-β intracellular domain preferentially dephosphorylates purified Met at tyrosine 1356 in vitro. In addition, the substrate-trapping mutant of RPTP-β specifically interacts with Met in intact cells. Expression of RPTP-β in human primary keratinocytes reduces HGF induction of VEGF expression, proliferation, and motility. Taken together, the above data indicate that RPTP-β is a key regulator of Met function.  相似文献   

11.
Hepatocyte growth factor (HGF) and Met/HGF receptor tyrosine kinase play a role in the progression to invasive and metastatic cancers. A variety of cancer cells secrete molecules that enhance HGF expression in stromal fibroblasts, while fibroblast-derived HGF, in turn, is a potent stimulator of the invasion of cancer cells. In addition to the ligand-dependent activation, Met receptor activation is negatively regulated by cell-cell contact and Ser985 phosphorylation in the juxtamembrane of Met. The loss of intercellular junctions may facilitate an escape from the cell-cell contact-dependent suppression of Met-signaling. Significance of juxtamembrane mutations found in human cancers is assumed to be a loss-of-function in the negative regulation of Met. In attempts to block the malignant behavior of cancers, NK4 was isolated as a competitive antagonist against HGF-Met signaling. Independently on its HGF-antagonist action, NK4 inhibited angiogenesis induced by vascular endothelial cell growth factor and basic fibroblast growth factor, as well as HGF. In experimental models of distinct types of cancers, NK4 inhibited Met activation and this was associated with inhibition of tumor invasion and metastasis. NK4 inhibited tumor angiogenesis, thereby suppressing angiogenesis-dependent tumor growth. Cancer treatment with NK4 suppresses malignant tumors to be "static" in both tumor growth and spreading.  相似文献   

12.
The receptor tyrosine kinase Met plays a pivotal role in vertebrate development and tissue regeneration, its deregulation contributes to cancer. Met is also targeted during the infection by the facultative intracellular bacterium Listeria monocytogenes. The mechanistic basis for Met activation by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF) is only beginning to be understood at a structural level. Crystal structures of Met in complex with L. monocytogenes InlB suggest that Met dimerization by this bacterial invasion protein is mediated by a dimer contact of the ligand. Here, I review the structural basis of Met activation by InlB and highlight parallels and differences to the physiological Met ligand HGF/SF and its splice variant NK1.  相似文献   

13.
Decorin inhibits the epidermal growth factor receptor (EGFR) by down-regulating its tyrosine kinase activity, thereby blocking the growth of a variety of transformed cells and tumor xenografts. In this study we provide evidence that decorin directly binds to the EGFR causing its dimerization, internalization, and ultimately its degradation. Using various pharmacological agents to disrupt clathrin-dependent and -independent endocytosis, we demonstrate that decorin evokes a protracted internalization of the EGFR primarily via caveolar-mediated endocytosis. In contrast to EGF, decorin targets the EGFR to caveolae, but not to early or recycling endosomes. Ultimately, however, both EGF- and decorin-induced pathways converge into late endosomes/lysosomes for final degradation. Thus, we have discovered a novel biological mechanism for decorin that could explain its anti-proliferative and anti-oncogenic mode of action.  相似文献   

14.
Decorin, a small leucine-rich proteoglycan, is a key regulator of tumor growth by acting as an antagonist of the epidermal growth factor receptor (EGFR) tyrosine kinase. To search for cell surface receptors interacting with decorin, we generated a decorin/alkaline phosphatase chimeric protein and used it to screen a cDNA library by expression cloning. We identified two strongly reactive clones that encoded either the full-length EGFR or its ectodomain. A physiologically relevant interaction between decorin and EGFR was confirmed in the yeast two-hybrid system and further validated by experiments using EGF/EGFR interaction and transient cell transfection assays. Using a panel of deletion mutants, decorin binding was mapped to a narrow region of the EGFR within its ligand-binding L2 domain. Moreover, the central leucine-rich repeat 6 of decorin was required for interaction with the EGFR. Site-directed mutagenesis of the EGFR L2 domain showed that a cluster of residues, His(394)-Ile(402), was essential for both decorin and EGF binding. In contrast, K465, previously shown to be cross-linked to epidermal growth factor (EGF), was required for EGF but not for decorin binding. Thus, decorin binds to a discrete region of the EGFR, partially overlapping with but distinct from the EGF-binding domain. These findings could lead to the generation of protein mimetics capable of suppressing EGFR function.  相似文献   

15.
Dorsal ruffles are apical protrusions induced in response to many growth factors, yet their function is poorly understood. Here we report that downstream from the hepatocyte growth factor (HGF) receptor tyrosine kinase (RTK), Met, dorsal ruffles function as both a localized signaling microdomain as well as a platform from which the Met RTK internalizes and traffics to a degradative compartment. In response to HGF, colonies of epithelial Madin-Darby canine kidney cells form dorsal ruffles for up to 20 min. Met is transcytosed from the basolateral membrane on Rab4 endosomes, to the apical surface where Met, as well as a Met substrate and scaffold protein, Gab1, localize to the dorsal ruffle membrane. This results in activation of downstream signaling proteins, as evidenced by localization of phospho-ERK1/2 to dorsal ruffles. As dorsal ruffles collapse, Met is internalized into EEA1- and Rab5-positive endosomes and is targeted for degradation through delivery to an Hrs-positive sorting compartment. Enhancing HGF-dependent dorsal ruffle formation, through overexpression of Gab1 or activated Pak1 kinase, promotes more efficient degradation of the Met RTK. Conversely, the ablation of dorsal ruffle formation, by pre-treatment with SITS (4-acetamido-4′-isothiocyabatostilbene-2′,2-disulfonic acid) or expression of a Gab1 mutant, impairs Met degradation. Taken together, these data support a function for dorsal ruffles as a biologically relevant signaling microenvironment and a mechanism for Met receptor internalization and degradation.  相似文献   

16.
Hepatocyte growth factor/scatter factor (HGF/SF) acts through the membrane-anchored Met receptor tyrosine kinase to induce invasive growth. Deregulation of this signaling is associated with tumorigenesis and involves, in most cases, overexpression of the receptor. We demonstrate that Met is processed in epithelial cells by presenilin-dependent regulated intramembrane proteolysis (PS-RIP) independently of ligand stimulation. The proteolytic process involves sequential cleavage by metalloproteases and the γ-secretase complex, leading to generation of labile fragments. In normal epithelial cells, although expression of cleavable Met by PS-RIP is down-regulated, uncleavable Met displayed membrane accumulation and induced ligand-independent motility and morphogenesis. Inversely, in transformed cells, the Met inhibitory antibody DN30 is able to promote Met PS-RIP, resulting in down-regulation of the receptor and inhibition of the Met-dependent invasive growth. This demonstrates the original involvement of a proteolytic process in degradation of the Met receptor implicated in negative regulation of invasive growth.  相似文献   

17.
We have recently discovered that the insulin-like growth factor receptor I (IGF-IR) is up-regulated in human invasive bladder cancer and promotes migration and invasion of transformed urothelial cells. The proteoglycan decorin, a key component of the tumor stroma, can positively regulate the IGF-IR system in normal cells. However, there are no available data on the role of decorin in modulating IGF-IR activity in transformed cells or in tumor models. Here we show that the expression of decorin inversely correlated with IGF-IR expression in low and high grade bladder cancers (n = 20 each). Decorin bound with high affinity IGF-IR and IGF-I at distinct sites and negatively regulated IGF-IR activity in urothelial cancer cells. Nanomolar concentrations of decorin promoted down-regulation of IRS-1, one of the critical proteins of the IGF-IR pathway, and attenuated IGF-I-dependent activation of Akt and MAPK. This led to decorin-evoked inhibition of migration and invasion upon IGF-I stimulation. Notably, decorin did not cause down-regulation of the IGF-IR in bladder, breast, and squamous carcinoma cells. This indicates that decorin action on the IGF-IR differs from its known activity on other receptor tyrosine kinases such as the EGF receptor and Met. Our results provide a novel mechanism for decorin in negatively modulating both IGF-I and its receptor. Thus, decorin loss may contribute to increased IGF-IR activity in the progression of bladder cancer and perhaps other forms of cancer where IGF-IR plays a role.  相似文献   

18.
Met, the high affinity receptor for hepatocyte growth factor, is one of the most frequently activated tyrosine kinases in human cancer and a validated target for cancer therapy. We previously developed a mouse monoclonal antibody directed against the extracellular portion of Met (DN-30) that induces Met proteolytic cleavage (receptor “shedding”) followed by proteasome-mediated receptor degradation. This translates into inhibition of hepatocyte growth factor/Met-mediated biological activities. However, DN-30 binding to Met also results in partial activation of the Met kinase due to antibody-mediated receptor homodimerization. To safely harness the therapeutic potential of DN-30, its shedding activity must be disassociated from its agonistic activity. Here we show that the DN-30 Fab fragment maintains high affinity Met binding, elicits efficient receptor shedding and down-regulation, and does not promote kinase activation. In Met-addicted tumor cell lines, DN-30 Fab displays potent cytostatic and cytotoxic activity in a dose-dependent fashion. DN-30 Fab also inhibits anchorage-independent growth of several tumor cell lines. In mouse tumorigenesis assays using Met-addicted carcinoma cells, intratumor administration of DN-30 Fab or systemic delivery of a chemically stabilized form of the same molecule results in reduction of Met phosphorylation and inhibition of tumor growth. These data provide proof of concept that monovalency unleashes the full therapeutic potential of the DN-30 antibody and point at DN-30 Fab as a promising tool for Met-targeted therapy.  相似文献   

19.
Hepatocyte growth factor (HGF), a plasminogen-related growth factor, is the ligand for Met, a receptor tyrosine kinase implicated in development, tissue regeneration, and invasive tumor growth. HGF acquires signaling activity only upon proteolytic cleavage of single-chain HGF into its alpha/beta heterodimer, similar to zymogen activation of structurally related serine proteases. Although both chains are required for activation, only the alpha-chain binds Met with high affinity. Recently, we reported that the protease-like HGF beta-chain binds to Met with low affinity (Stamos, J., Lazarus, R. A., Yao, X., Kirchhofer, D., and Wiesmann, C. (2004) EMBO J. 23, 2325-2335). Here we demonstrate that the zymogen-like form of HGF beta also binds Met, albeit with 14-fold lower affinity than the protease-like form, suggesting optimal interactions result from conformational changes upon cleavage of the single-chain form. Extensive mutagenesis of the HGF beta region corresponding to the active site and activation domain of serine proteases showed that 17 of the 38 purified two-chain HGF mutants resulted in impaired cell migration or Met phosphorylation but no loss in Met binding. However, reduced biological activities were well correlated with reduced Met binding of corresponding mutants of HGF beta itself in assays eliminating dominant alpha-chain binding contributions. Moreover, the crystal structure of HGF beta determined at 2.53 A resolution provides a structural context for the mutagenesis data. The functional Met binding site is centered on the "active site region" including "triad" residues Gln(534) [c57], Asp(578) [c102], and Tyr(673) [c195] and neighboring "activation domain" residues Val(692), Pro(693), Gly(694), Arg(695), and Gly(696) [c214-c219]. Together they define a region that bears remarkable resemblance to substrate processing regions of serine proteases. Models of HGF-dependent Met receptor activation are discussed.  相似文献   

20.
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号