首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of the moss Physcomitrella patens as a production system for heterologous proteins requires highly standardised culture conditions. For this purpose a semi-continuous photoautotrophic bioreactor culture of Physcomitrella was established. This culture grew stably for 7 weeks in a 5-l bioreactor with a dilution rate of 0.22/day. Enrichment of the air for aeration in a batch bioreactor culture with 2% (v/v) CO2 resulted in an increase in the specific growth rate to 0.57/day. Changes in the pH of the semi-continuous bioreactor culture medium between pH 4.5 and pH 7.0 influenced protonema differentiation; however it did not negatively affect the growth rate compared to uncontrolled pH. The advantages of Physcomitrella as a system for the production of heterologous proteins in plants are discussed.  相似文献   

2.
Two aspen (Populus tremuloides Michx.) clones, differing in O3 tolerance, were grown in a free-air CO2 enrichment (FACE) facility near Rhinelander, Wisconsin, and exposed to ambient air, elevated CO2, elevated O3 and elevated CO2+O3. Leaf instantaneous light-saturated photosynthesis (PS) and leaf areas (A) were measured for all leaves of the current terminal, upper (current year) and the current-year increment of lower (1-year-old) lateral branches. An average, representative branch was chosen from each branch class. In addition, the average photosynthetic rate was estimated for the short-shoot leaves. A summing approach was used to estimate potential whole-plant C gain. The results of this method indicated that treatment differences were more pronounced at the plant- than at the leaf- or branch-level, because minor effects within modules accrued in scaling to plant level. The whole-plant response in C gain was determined by the counteracting changes in PS and A. For example, in the O3-sensitive clone (259), inhibition of PS in elevated O3 (at both ambient and elevated CO2) was partially ameliorated by an increase in total A. For the O3-tolerant clone (216), on the other hand, stimulation of photosynthetic rates in elevated CO2 was nullified by decreased total A.  相似文献   

3.
Annual and short-lived perennial plant performance during wet years is important for long-term persistence in the Mojave Desert. Additionally, the effects of elevated CO2 on desert plants may be relatively greater during years of high resource availability compared to dry years. Therefore, during an El Niño year at the Nevada Desert FACE Facility (a whole-ecosystem CO2 manipulation), we characterized photosynthetic investment (by assimilation rate-internal CO2 concentration relationships) and evaluated the seasonal pattern of net photosynthesis (Anet) and stomatal conductance (gs) for an invasive annual grass, Bromus madritensis ssp. rubens and a native herbaceous perennial, Eriogonum inflatum. Prior to and following flowering, Bromus showed consistent increases in both the maximum rate of carboxylation by Rubisco (VCmax) and the light-saturated rate of electron flow (Jmax) at elevated CO2. This resulted in greater Anet at elevated CO2 throughout most of the life cycle and a decrease in the seasonal decline of maximum midday Anet upon flowering as compared to ambient CO2. Eriogonum showed significant photosynthetic down-regulation to elevated CO2 late in the season, but the overall pattern of maximum midday Anet was not altered with respect to phenology. For Eriogonum, this resulted in similar levels of Anet on a leaf area basis as the season progressed between CO2 treatments, but greater photosynthetic activity over a typical diurnal period. While gs did not consistently vary with CO2 in Bromus, it did decrease in Eriogonum at elevated CO2 throughout much of the season. Since the biomass of both plants increased significantly at elevated CO2, these patterns of gas exchange highlight the differential mechanisms for increased plant growth. The species-specific interaction between CO2 and phenology in different growth forms suggests that important plant strategies may be altered by elevated CO2 in natural settings. These results indicate the importance of evaluating the effects of elevated CO2 at all life cycle stages to better understand the effects of elevated CO2 on whole-plant performance in natural ecosystems.  相似文献   

4.
The consumption and assimilation rates of the woodlouse Armadillidium vulgare were measured on leaf litters from five herb species grown and naturally senesced at 350 and 700 µl l-1 CO2. Each type of litter was tested separately after 12, 30 and 45 days of decomposition at 18°C. The effects of elevated CO2 differed depending on the plant species. In Medicago minima (Fabaceae), the CO2 treatment had no significant effect on consumption and assimilation. In Tyrimnus leucographus (Asteraceae), the CO2 treatment had no significant effect on consumption, but the elevated CO2 litter was assimilated at a lower rate than the ambient CO2 litter after 30 days of decomposition. In the three other species, Galactites tomentosa (Asteraceae), Trifolium angustifolium (Fabaceae) and Lolium rigidum (Poaceae), the elevated CO2 litter was consumed and/or assimilated at a higher rate than the ambient CO2 litter. Examination of the nitrogen contents in these three species of litter did not support the hypothesis of compensatory feeding, i.e. an increase in woodlouse consumption to compensate for low nitrogen content of the food. Rather, the results suggest that in herbs that were unpalatable at the start of the experiment (Galactites, Trifolium and Lolium), more of the the litter produced at 700 µl l-1 CO2 was consumed than of that produced at 350 µl l-1 because inhibitory factors were eliminated faster during decomposition.  相似文献   

5.
We have performed a comparative analysis of the fermentation of the solutions of the mixtures of D-glucose and D-xylose with the yeasts Pachysolen tannophilus (ATCC 32691) and Candida shehatae (ATCC 34887), with the aim of producing bioethanol. All the experiments were performed in a batch bioreactor, with a constant aeration level, temperature of 30v°C, and a culture medium with an initial pH of 4.5. For both yeasts, the comparison was established on the basis of the following parameters: maximum specific growth rate, biomass productivity, specific rate of substrate consumption (qs) and of ethanol production (qE), and overall ethanol and xylitol yields. For the calculation of the specific rates of substrate consumption and ethanol production, differential and integral methods were applied to the kinetic data. From the experimental results, it is deduced that both Candida and Pachysolen sequentially consume the two substrates, first D-glucose and then D-xylose. In both yeasts, the specific substrate-consumption rate diminished over each culture. The values qs and qE proved higher in Candida, although the higher ethanol yield was of the same order for both yeasts, close to 0.4 kg kgу.  相似文献   

6.
The gaseous composition is an important factor affecting the performance of plant cell cultures. Gaseous metabolites, especially O2, CO2 and C2H4, play important roles in cell physiology. Forced aeration in bioreactors usually results in poor cell growth and secondary metabolite production. In this work, the effects of gaseous metabolites on cell growth, secondary metabolite formation as well as PPO activity were investigated with respect to Stizolobium hassjoo cell culture producing l-DOPA (3,4-dihydroxyphenylalanine). A device allowing the control of the partial pressures of gaseous metabolites in shake flasks was designed. In addition, a recirculating gas system with a PO2 controller was designed for a bioreactor. This device could maintain constant PO2 and PCO2 in the bioreactor headspace. The results showed that the highest l-DOPA content was attained at PO2=0.30 atm. Higher PO2 values retarded cell growth and increased the pH of the culture broth. High PO2 also enhanced the formation of ethylene and inhibited l-DOPA formation. Carbon dioxide concentrations lower than 5% enhanced cell growth and l-DOPA formation. Cell growth was retarded by 0.3 ppm of ethylene in 2~5 carbon dioxide. Oxygen concentration and D.O. in the broth could be controlled at constant levels in the recirculating culture system. Enrichment of PO2 up to 0.3 atm during the later stage of cultivation facilitated l-DOPA formation. The interaction among the gaseous metabolites and their influences on cell metabolism and l-DOPA formation were elucidated. This information will facilitate the rational operation of plant cell culture systems producing secondary metabolites.  相似文献   

7.
Shoot and reproductive biomass of genotypes of Bromus erectus and Dactylis glomerata grown in competition at ambient and elevated CO2 were examined for 2 consecutive years in order to test whether genetic variation in those traits exists and whether it is maintained over time. At the species level, a positive CO2 response of shoot biomass of both species was only found in the first year of treatment. At the genotype level, no significant CO22genotype interaction was found at any single harvest either for vegetative or reproductive biomass of either species. Analysis over time, however, indicated that there is a potential for evolutionary adaptation only for D. glomerata: (1) repeated measures ANOVA detected a marginally significant CO22genotype2time interaction for shoot biomass, because the range of the genotypes CO2 response increased over time; (2) genotypes that displayed the highest response during the first year under elevated CO2 also showed the highest response the second year. Null (B. erectus) or weak (D. glomerata) selective potentials of elevated CO2 were detected in this experiment, but short time series could underestimate this potential with perennial species.  相似文献   

8.
This study examined the effects of elevated CO2 on secondary metabolites for saplings of tropical trees. In the first experiment, nine species of trees were grown in the ground in open-top chambers in central Panama at ambient and elevated CO2 (about twice ambient). On average, leaf phenolic contents were 48% higher under elevated CO2. Biomass accumulation was not affected by CO2, but starch, total non-structural carbohydrates and C/N ratios all increased. In a second experiment with Ficus, an early successional species, and Virola, a late successional species, treatments were enriched for both CO2 and nutrients. For both species, nutrient fertilization increased plant growth and decreased leaf carbohydrates, C/N ratios and phenolic contents, as predicted by the carbon/nutrient balance hypothesis. Changes in leaf C/N levels were correlated with changes in phenolic contents for Virola (r=0.95, P<0.05), but not for Ficus. Thus, elevated CO2, particularly under conditions of low soil fertility, significantly increased phenolic content as well as the C/N ratio of leaves. The magnitude of the changes is sufficient to negatively affect herbivore growth, survival and fecundity, which should have impacts on plant/herbivore interactions.  相似文献   

9.
This paper is concerned with the potential use of a reciprocating plate bioreactor (RPB) for suspended plant cell cultures. The agitation mechanism of the RPB system, a plate stack, was first evaluated in pure water and in pseudocells medium of 20, 40 and 60% of PCV. As the pseudocell concentration increases, the oxygen mass transfer coefficient, KLa, significantly decreases. Correlations were established for each plate stack and concentration with good prediction of KLa. Three fermentations were performed with Vitis vinifera cells, two in the RPB system and one in shake flasks. Shake flask cultures showed better performance whereas the first fermentation performed with the RPB showed the lowest performance. The lower growth observed was attributed to the operating conditions for aeration and the dissolved oxygen control strategy. CO2 stripping in the initial portion of the fermentation led to lower biomass growth. The second fermentation, with more appropriate operating conditions, appears to follow the trend of shake flask cultures but was terminated after 5 days due to contamination. The RPB has the potential to be used for suspended plant cell cultures but significant research needs to be performed to find optimal operating conditions but, more importantly, to make appropriate modifications to ensure the sterility of the bioreactor over long time periods.  相似文献   

10.
The mechanisms for species-specific growth responses to changes in atmospheric CO2 concentration within narrow ecological groups of species, such as shade-tolerant, late-successional trees, have rarely been addressed and are not well understood. In this study the underlying functional traits for interspecific variation in the biomass response to elevated CO2 were explored for seedlings of five late-successional temperate forest tree species (Fagus sylvatica, Acer pseudoplatanus, Quercus robur, Taxus baccata, Abies alba). The seedlings were grown in the natural forest understorey in very low and low light microsites (an average of 1.3% and 3.4% full sun in this experiment), and were exposed to either current ambient CO2 concentrations, 500, or 660 µl CO2 l-1 in 36 open-top chambers (OTC) over two growing seasons. Even across the narrow range of successional status and shade tolerance, the study species varied greatly in photosynthesis, light compensation point, leaf dark respiration (Rd), leaf nitrogen concentration, specific leaf area (SLA), leaf area ratio (LAR), and biomass allocation among different plant parts, and showed distinct responses to CO2 in these traits. No single species combined all characteristics traditionally considered as adaptive to low light conditions. At very low light, the CO2 stimulation of seedling biomass was related to increased LAR and decreased Rd, responses that were observed only in Fagus and Taxus. At slightly higher light levels, interspecific differences in the biomass response to elevated CO2 were reversed and correlated best with leaf photosynthesis. The data provided here contribute to a mechanistic process-based understanding of distinct response patterns in co-occurring tree species to elevated CO2 in natural deep shade. I conclude that the high variation in physiological and morphological traits among late-successional species, and the consequences for their responses to slight changes in resource availability, have previously been underestimated. The commonly used broad definitions of functional groups of species may not be sufficient for the understanding of recruitment success and dynamic changes in species composition of old-growth forests in response to rising concentrations of atmospheric CO2.  相似文献   

11.
Post-storage gas exchange parameters like CO2 assimilation, stomatal conductance, transpiration, water use efficiency and intercellular CO2 concentrations, together with several chlorophyll a fluorescence parameters: Fo, Fv, Fv/Fm, Fm/Fo and Fv/Fo were examined in radiata pine (Pinus radiata D. Don) seedlings that were stored for 1, 8 or 15 days at 4° or 10°C with or without soil around the roots. Results were analysed in relation to post-storage water potential and electrolyte leakage in order to forecast their vitality (root growth potential) following cold storage, and post-planting survival potential under optimal conditions. During storage at 4° and 10°C, photosynthesis was reduced, being more pronounced in bare-root seedlings than in seedlings with soil around the roots. The depletion of CO2 assimilation seemed not to be solely a stomatal effect as effects on chloroplasts contributed to this photosynthetic inhibition. Thus, the fall in the ratios Fv/Fm, Fv/Fo and Fm/Fo indicated photochemical apparatus damage during storage. Photosynthetic rate was positively correlated with the root growth index and new root length showing that new root growth is dependent primarily on current photosynthesis. Pre-planting exposure of bare-root radiata pine seedlings to temperatures of 10°C for more than 24 h during transportation or storage is not recommended.  相似文献   

12.
Dextransucrases from Leuconostoc mesenteroides have been used to produce a diversity of controlled structure oligosaccharides with potential industrial applications. This is the case of !(1̄) branched glucooligosaccharides produced by L. mesenteroides NRRL B-1299 dextransucrase. In order to establish an industrial scale process with the immobilized enzyme, a biocatalyst was produced by whole cell entrapment in alginate beads. The main physical and physicochemical properties of the biocatalyst were determined and the hydrodynamic behavior in a packed bed reactor studied. It was possible to produce spherical beads of 0.2 cm diameter containing the insoluble part of L. mesenteroides culture (cells and insoluble polymer) with an activity of 4 IU/g. Immobilization yield reached 93% with an effectiveness factor of 0.995 for particles of dp < 0.2 cm. Due to the complexity of dextransucrase mechanism and kinetics, data obtained from initial rate measurements failed to describe the results obtained from the batch and continuous reactors. Therefore, apparent KM and Vmax data were used for the reactor modeling. It was found that under the conditions studied, the reaction rate was controlled by external mass transfer limitations.  相似文献   

13.
To elucidate how atmospheric CO2 enrichment, enhanced nutrient supply and soil quality interact to affect regrowth of temperate forests, young Fagus sylvatica and Picea abies trees were grown together in large model ecosystems. Identical communities were established on a nutrient-poor acidic and on a more fertile calcareous soil and tree growth, leaf area index, fine root density and soil respiration monitored over four complete growing seasons. Biomass responses to CO2 enrichment and enhanced N supply at the end of the experiment reflected compound interest effects of growth stimulation during the first two to three seasons rather than persistent stimulation over the whole duration of the experiment. Whereas biomass of Picea was enhanced in elevated CO2 on both soils, Fagus responded negatively to CO2 on acidic but positively on calcareous soil. Biomass of both species profited from enhanced N supply on the poor acidic soil only. Leaf area index on both soils was greater in high N supply as a consequence of a stimulation early in the experiment, but was unaffected by CO2 enrichment. Fine root density on acidic soil was increased in high N supply, but this did not stimulate soil respiration rate. In contrast, elevated CO2 stimulated both fine root density and soil CO2 efflux on calcareous soil, especially towards the end of the experiment. Our experiment suggests that future species dominance in beech-spruce forests is likely to change in response to CO2 enrichment, but this response is subject to complex interactions with environmental factors other than CO2, particularly soil type.  相似文献   

14.
Forest carbon balance under elevated CO2   总被引:10,自引:2,他引:8  
Free-air CO2 enrichment (FACE) technology was used to expose a loblolly pine (Pinus taeda L.) forest to elevated atmospheric CO2 (ambient + 200 µl l-1). After 4 years, basal area of pine trees was 9.2% larger in elevated than in ambient CO2 plots. During the first 3 years the growth rate of pine was stimulated by ~26%. In the fourth year this stimulation declined to 23%. The average net ecosystem production (NEP) in the ambient plots was 428 gC m-2 year-1, indicating that the forest was a net sink for atmospheric CO2. Elevated atmospheric CO2 stimulated NEP by 41%. This increase was primarily an increase in plant biomass increment (57%), and secondarily increased accumulation of carbon in the forest floor (35%) and fine root increment (8%). Net primary production (NPP) was stimulated by 27%, driven primarily by increases in the growth rate of the pines. Total heterotrophic respiration (Rh) increased by 165%, but total autotrophic respiration (Ra) was unaffected. Gross primary production was increased by 18%. The largest uncertainties in the carbon budget remain in separating belowground heterotrophic (soil microbes) and autotrophic (root) respiration. If applied to temperate forests globally, the increase in NEP that we measured would fix less than 10% of the anthropogenic CO2 projected to be released into the atmosphere in the year 2050. This may represent an upper limit because rising global temperatures, land disturbance, and heterotrophic decomposition of woody tissues will ultimately cause an increased flux of carbon back to the atmosphere.  相似文献   

15.
In the present study the hydrodynamic characteristics (bed expansion and pressure drop) of low-density polyethylene (LDPE) and polypropylene (PP) are studied in a liquid-solid inverse fluidized bed reactor as a function of particle diameter, liquid viscosity and density. The bed expansion and pressure drop data are used to determine the minimum fluidization velocity, Umf and friction factor, P. It was found that the Umf increased with an increase in the particle diameter and a decrease in solid density and was independent of initial bed height (solid loading). In addition, the Umf decreased with an increase in the CMC concentration. The friction factor Reynolds number plot was found similar to that of classical fluidization. Dimensionless equations were proposed for the. prediction of the friction factor and the Umf.  相似文献   

16.
A horizontal rotating tubular bioreactor (HRTB) is designed as the combination of a "thin layer bioreactor" and a "biodisc" reactor. The investigation of mixing in HRTB was done by the temperature step method in a wide range of process conditions [residence time (tz=360036000 s) and bioreactor rotation speed (n=0.0830.917 sу)]. In all experiments heat losses were detected. A mathematical model based on "tank in series" concept was developed to describe the mixing in HRTB - a "spiral flow" model (SFM) which has incorporated heat losses. However, the simulations of SFM could be used for calculation of temperature response curves for the case when there is no heat losses. These corrected curves were used then to estimate Bodenstein number as a parameter of standard dispersion model (SDM). The obtained Bodenstein numbers were in the range 10-17. The simulations showed that SFM was more capable to describe the mixing in HRTB giving better fitting with experimental measurements than SDM, indicating that mixing pattern in HRTB is too complex to be described with this relatively simple, one-parameter model.  相似文献   

17.
Fluxes of CO2 and H2O vapour from dense stands of the C4 emergent macrophyte grass Echinochloa polystachya were measured by eddy covariance in both the low water (LW) and high water (HW, flooded) phases of the annual Amazon river cycle at Manaus, Brazil. Typical clear-sky midday CO2 uptake rates by the vegetation stand (including detritus, sediment or water surface) were 30 and 35 µmol CO2 (ground) m-2 s-1 in the LW and HW periods, respectively. A rectangular hyperbola model fitted the responses of "instantaneous" (20- or 30-min average) net CO2 exchange rates to incident photosynthetic photon flux densities (PFD) well. Stand evaporation rates were linearly related to PFD. The major difference in CO2 uptake rates between the two periods was the larger respiration flux during LW due to the CO2 efflux from sediment, roots and litter. Integrated 20- or 30-min fluxes were used to derive relationships between daily CO2 and H2O vapour fluxes and incident radiation. The daily CO2 fluxes were almost linearly related to incident radiation, but there was evidence of saturation at the highest daily radiation totals. Annual productivity estimated from the daily model in 1996-1997 agreed closely with that previously estimated for 1985-1986 from a leaf-scale photosynthetic model, but were some 15% less than those derived at that time from biomass harvests. Both CO2 uptake and water use efficiency were comparable with those found in fertilised maize fields in warm temperate conditions.  相似文献   

18.
G. Edwards  H. Clark  P. Newton 《Oecologia》2001,127(3):383-394
Seed production and seedling recruitment were measured over 2 years under ambient (360 ppm) and elevated (475 ppm) atmospheric CO2 in a free air carbon dioxide enrichment (FACE) experiment, carried out in a sheep-grazed pasture on dry, sandy soil in New Zealand. In both years elevated CO2 led to more dispersed seeds of the grasses Anthoxanthum odoratum, Lolium perenne and Poa pratensis, the legumes Trifolium repens and T. subterraneum and the herbs Hypochaeris radicata and Leontodon saxatilis. The increased seed dispersal in A. odoratum, H. radicata, Leontodon saxatilis and T. repens reflected both more inflorescences per unit area and more seeds per inflorescence under elevated CO2. The increased seed dispersal in Lolium perenne, P. pratensis and T. subterraneum was due solely to more inflorescences per unit area. The number of seedlings that emerged and survived to at least 7 months of age was increased by elevated CO2 for H. radicata, Leontodon saxatilis, T. repens and T. subterraneum in both years and for A. odoratum and Lolium perenne in the first year. For species where increased seedling recruitment was noted, there was a significant positive correlation between seed production in summer and seedling emergence in the following autumn and winter, and sowing 200 extra seeds per species m-2 resulted in more seedlings compared to unsown controls. Elevated CO2 did not affect seedling survival in any species. There was no measurable effect of elevated CO2 on canopy and soil surface conditions or soil moisture at the time of seedling emergence. The results suggest the dominant effect of elevated CO2 on seedling recruitment in this pasture was an indirect one, reflecting effects on the number of seeds produced. The biomass of H. radicata, Leontodon saxatilis, T. repens and T. subterraneum in the above-ground vegetation was greater under elevated than ambient CO2. However, the size of individual seedlings and mature plants of these four species was unaffected by elevated CO2. The results indicate an important way elevated CO2 influenced plant species composition in this pasture was through changes in the pattern of seedling recruitment.  相似文献   

19.
A general relationship for prediction of the volumetric oxygen transfer coefficient (kLa) in a tower bioreactor utilizing immobilized Penicillium chrysogenum as function of air superficial velocity, suspension rheological parameters and liquid physical properties is proposed in this study. The relationship was applied to three different systems and a good agreement between the calculated values and the experimental data was obtained.  相似文献   

20.
The objectives of this study were to investigate how different soil types and elevated N deposition (0.7 vs 7 g N m-2a-1) influence the effects of elevated CO2 (370 vs 570 µmol CO2 mol-1) on soil nutrients and net accumulation of N, P, K, S, Ca, Mg, Fe, Mn, and Zn in spruce (Picea abies) and beech (Fagus sylvatica). Model ecosystems were established in large open-top chambers on two different forest soils: a nutrient-poor acidic loam and a nutrient-rich calcareous sand. The response of net nutrient accumulation to elevated atmospheric CO2 depended upon soil type (interaction soil 2 CO2, P<0.05 for N, P, K, S, Ca, Mg, Zn) and differed between spruce and beech. On the acidic loam, CO2 enrichment suppressed net accumulation of all nutrients in beech (P<0.05 for P, S, Zn), but stimulated it for spruce (P<0.05 for Fe, Zn) On the nutrient-rich calcareous sand, increased atmospheric CO2 enhanced nutrient accumulation in both species significantly. Increasing the N deposition did not influence the CO2 effects on net nutrient accumulation with either soil. Under elevated atmospheric CO2, the accumulation of N declined relative to other nutrients, as indicated by decreasing ratios of N to other nutrients in tree biomass (all ratios: P<0.001, except the N to S ratio). In both the soil and soil solution, elevated CO2 did not influence concentrations of base cations and available P. Under CO2 enrichment, concentrations of exchangeable NH4+ decreased by 22% in the acidic loam and increased by 50% in the calcareous sand (soil 2 CO2, P<0.001). NO3- concentrations decreased by 10-70% at elevated CO2 in both soils (P<0.01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号