首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Prostate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model) or represent an inducible population emerging upon appropriate stimulation of differentiated cells. Hepatocyte Growth Factor (HGF) receptor c-MET is specifically expressed in immature prostate cells. Our objective is to determine the role of immature cells in prostate cancer by analysis of the HGF/c-MET pathway.Gene-expression profiling of DU145 prostate cancer cells stimulated with HGF revealed induction of a molecular signature associated with stem cells, characterized by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 ('stem-like signature'). We confirmed the acquisition of a stem-like phenotype by quantitative PCR, FACS analysis and Western blotting. Further, HGF led to activation of the stem cell related Notch pathway by up-regulation of its ligands Jagged-1 and Delta-like 4. Small molecules SU11274 and PHA665752 targeting c-MET activity were both able to block the molecular and biologic effects of HGF. Knock-down of c-MET by shRNA infection resulted in significant reduction and delay of orthotopic tumour-formation in male NMRI mice. Immunohistochemical analysis in prostatectomies revealed significant enrichment of c-MET positive cells at the invasive front, and demonstrated co-expression of c-MET with stem-like markers CD49b and CD49f.In conclusion, activation of c-MET in prostate cancer cells induced a stem-like phenotype, indicating a dynamic relation between differentiated and stem-like cells in this malignancy. Its mediation of efficient tumour-formation in vivo and predominant receptor expression at the invasive front implicate that c-MET regulates tumour infiltration in surrounding tissues putatively by acquisition of a stem-like phenotype.  相似文献   

2.
Emerging evidence suggests that tumors contain and are driven by a cellular component that displays stem cell properties, the so-called cancer stem cells (CSCs). CSCs have been identified in several solid human cancers; however, there are no data about CSCs in primary human gastric cancer (GC). By using CD133 and CD44 cell surface markers we investigated whether primary human GCs contain a cell subset expressing stem-like properties and whether this subpopulation has tumor-initiating properties in xenograft transplantation experiments. We examined tissues from 44 patients who underwent gastrectomy for primary GC. The tumorigenicity of the cells separated by flow cytometry using CD133 and CD44 surface markers was tested by subcutaneous or intraperitoneum injection in NOD/SCID and nude mice. GCs included in the study were intestinal in 34 cases and diffuse in 10 cases. All samples contained surface marker-positive cells: CD133(+) mean percentage 10.6% and CD133(+)/CD44(+) mean percentage 27.7%, irrespective of cancer phenotype or grade of differentiation. Purified CD133(+) and CD133(+)/CD44(+) cells, obtained in sufficient number only in 12 intestinal type GC cases, failed to reproduce cancer in two mice models. However, the unseparated cells produced glandular-like structures in 70% of the mice inoculated. In conclusion, although CD133(+) and CD133(+)/CD44(+) were detectable in human primary GCs, they neither expressed stem-like properties nor exhibited tumor-initiating properties in xenograft transplantation experiments.  相似文献   

3.
4.

Background

Human prostate basal cells expressing alpha-6 integrin (CD49fHi) and/or CD44 form prostaspheres in vitro. This functional trait is often correlated with stem/progenitor (S/P) activity, including the ability to self-renew and induce differentiated tubules in vivo. Antigenic profiles that distinguish tubule-initiating prostate stem cells (SCs) from progenitor cells (PCs) and mature luminal cells (LCs) with less regenerative potential are unknown.

Methodology/Principle Findings

Prostasphere assays and RT-PCR analysis was performed following FACS separation of total benign prostate cells based upon combinations of Epcam, CD44, and/or CD49f expression. Epithelial cell fractions were isolated, including Epcam+CD44+ and Epcam+CD44+CD49fHi basal cells that formed abundant spheres. When non-sphere-forming Epcam+CD44 cells were fractionated based upon CD49f expression, a distinct subpopulation (Epcam+CD44CD49fHi) was identified that possessed a basal profile similar to Epcam+CD44+CD49fHi sphere-forming cells (p63+ARLoPSA). Evaluation of tubule induction capability of fractionated cells was performed, in vivo, via a fully humanized prostate tissue regeneration assay. Non-sphere-forming Epcam+CD44 cells induced significantly more prostate tubular structures than Epcam+CD44+ sphere-forming cells. Further fractionation based upon CD49f co-expression identified Epcam+CD44CD49fHi (non-sphere-forming) basal cells with significantly increased tubule induction activity compared to Epcam+CD44CD49fLo (true) luminal cells.

Conclusions/Significance

Our data delineates antigenic profiles that functionally distinguish human prostate epithelial subpopulations, including putative SCs that display superior tubule initiation capability and induce differentiated ductal/acini structures, sphere-forming PCs with relatively decreased tubule initiation activity, and terminally differentiated LCs that lack both sphere–forming and tubule-initiation activity. The results clearly demonstrate that sphere-forming ability is not predictive of tubule-initiation activity. The subpopulations identified are of interest because they may play distinct roles as cells of origin in the development of prostatic diseases, including cancer.  相似文献   

5.
This study investigated whether there are marked differences in surface markers between rabbit and human mesenchymal stem cells (MSCs). Murine and rabbit MSCs have been reported to be CD90-negative. Rat MSCs have been reported to be CD71-negative. Our previous study also shows that rabbit MSCs are CD29-negative. However, human MSCs are generally considered to be CD29-, CD71-, and CD90-positive. Therefore, the surface markers of human MSCs might differ from those of other species. Rabbit bone marrow MSCs were obtained that had a multi-differentiation potential. The phenotype of these cells was studied using flow cytometry antibodies for 25 rabbit surface markers, namely, CD13, CD14, CD29, CD31, CD34, CD44, CD45, CD49d, CD49f, CD51, CD54, CD59, CD71, CD73, CD90, CD105, CD106, CD133, CD166, MHC I, MHC II, α-smooth muscle actin (α-SMA), cytokeratin, desmin, and vimentin. The phenotype of commercially available human MSCs was similarly studied using antibodies for human surface markers. CD14, CD31, CD34, CD45, CD49d, CD49f, CD51, CD54, CD71, CD106, CD133, MHC II, and cytokeratin were absent from both rabbit and human MSCs, while CD44, α-SMA, and vimentin were present on both cell lines. CD13, CD29, CD59, CD73, CD90, CD105, CD166, and MHC I were present on human MSCs, but not on rabbit MSCs. However, desmin was present on rabbit MSCs, but not on human MSCs. In total, the surface expression of nine markers differed between human and rabbit MSCs, whereas the surface expression of 16 markers was the same in the two cell lines.  相似文献   

6.
Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem‐like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24‐ cell populations) and the mature luminal cells (CD49f‐EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label‐free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value <0.05, 305, 322 and 98 proteins were identified as significantly different in three pairwise comparisons of ALDH+ versus CD44+CD24‐, ALDH+ versus CD49f‐EpCAM+ and CD44+CD24‐ versus CD49f‐EpCAM+, respectively. Pathway analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti‐CSC therapeutics.  相似文献   

7.
The prostate epithelium is composed of basal (BC), luminal (LEC), and neuroendocrine (NEC) cells. It is unclear how many subtypes of BCs in the prostate and which subtype of BCs contains the main stem cell niche in the adult prostate. Here we report seven BC subpopulations according to their p63, cytokeratin 14 (K14) and K5 expression patterns, including p63-positive/K14-negative/K5-negative (p63+/K14-/K5-), p63-/K14+/K5-, p63-/K14-/K5+, p63+/K14+/K5-, p63+/K14-/K5+, p63-/K14+/K5+, and p63+/K14+/K5+ BCs. We generated a p63-CreERT2 knock-in mouse line that expresses tamoxifen-inducible Cre activity in the p63-expressing cells, including the prostate BCs. We then crossbred this line with ROSA26R mice, and generated p63-CreERT2×ROSA26R bi-genic mice harboring the Cre-activated β-galactosidase reporter gene. We treated these bi-genic mice with tamoxifen to mark the p63+ BCs at different ages or under different hormonal conditions, and then traced the lineage differentiation of these genetically labeled BCs. We discovered that these p63+ BCs contain self-renewable stem cells in culture and efficiently differentiated into LECs, NECs and BCs in the postnatal, adult and re-generating mouse prostates. Therefore, BC population contains heterogeneous BCs that express different combinations of the p63, K14 and K5 differentiation markers. Because K14+ and K5+ BCs were previously shown to be extremely inefficient to produce LECs in adulthood, we propose that the p63+/K5-/K14- subpopulation of BCs contains most stem-like cells, especially in adult animals.  相似文献   

8.
Circulating CD34+ progenitor cells () gained importance in the field of regenerative medicine due to their potential to home in on injury sites and differentiate into cells of both endothelial and osteogenic lineages. In this study, we analyzed the mobilization kinetics and the numbers of CD34+, CD31+, CD45+, and CD133+ cells in twenty polytrauma patients (n = 13 male, n = 7 female, mean age 46.5±17.2 years, mean injury severity score (ISS) 35.8±12.5 points). In addition, the endothelial differentiation capacity of enriched CD34+cells was assessed by analyzing DiI-ac-LDL/lectin uptake, the expression of endothelial markers, and the morphological characteristics of these cells in Matrigel and spheroid cultures. We found that on days 1, 3, and 7 after a major trauma, the number of CD34+cells increased from 6- up to 12-fold (p<0.0001) over the number of CD34+cells from a control population of healthy, age-matched volunteers. The numbers of CD31+ cells were consistently higher on days 1 (1.4-fold, p<0.01) and 7 (1.3-fold, p<0.01), whereas the numbers of CD133+ cell did not change during the time course of investigation. Expression of endothelial marker molecules in CD34+cells was significantly induced in the polytrauma patients. In addition, we show that the CD34+ cell levels in severely injured patients were not correlated with clinical parameters, such as the ISS score, the acute physiology and chronic health evaluation II score (APACHE II), as well as the sequential organ failure assessment score (SOFA-2). Our results clearly indicate that pro-angiogenic cells are systemically mobilized after polytrauma and that their numbers are sufficient for the development of novel therapeutic models in regenerative medicine.  相似文献   

9.
The presence and functional role of tumor stem cells in benign tumors, and in human pituitary adenomas in particular, is a debated issue that still lacks a definitive formal demonstration. Fifty-six surgical specimens of human pituitary adenomas were processed to establish tumor stem-like cultures by selection and expansion in stem cell-permissive medium or isolating CD133-expressing cells. Phenotypic and functional characterization of these cells was performed (1) ex vivo, by immunohistochemistry analysis on paraffin-embedded tissues; (2) in vitro, attesting marker expression, proliferation, self-renewal, differentiation, and drug sensitivity; and (3) in vivo, using a zebrafish model. Within pituitary adenomas, we identified rare cell populations expressing stem cell markers but not pituitary hormones; we isolated and expanded in vitro these cells, obtaining fibroblast-free, stem-like cultures from 38 pituitary adenoma samples. These cells grow as spheroids, express stem cell markers (Oct4, Sox2, CD133, and nestin), show sustained in vitro proliferation as compared to primary cultures of differentiated pituitary adenoma cells, and are able to differentiate in hormone-expressing pituitary cells. Besides, pituisphere cells, apparently not tumorigenic in mice, engrafted in zebrafish embryos, inducing pro-angiogenic and invasive responses. Finally, pituitary adenoma stem-like cells express regulatory pituitary receptors (D2R, SSTR2, and SSTR5), whose activation by a dopamine/somatostatin chimeric agonist exerts antiproliferative effects. In conclusion, we provide evidence that human pituitary adenomas contain a subpopulation fulfilling biological and phenotypical signatures of tumor stem cells that may represent novel therapeutic targets for therapy-resistant tumors.  相似文献   

10.
11.
Several surface markers have been proposed for the identification and characterization of colorectal cancer stem-like cells (CR-CSLCs). However, their reliability in CR-CSLCs identification remains controversial. This study evaluated the correlation between all candidate surface marker's expression and CSLCs properties (tumorigenicity) through monitoring in vivo tumor incidence and final tumor volume. PubMed, Web of Science, and Scopus databases were systematically searched until November 2017. A total of 27 studies were found that met the inclusion criteria for cluster of differentiation 133 (CD133) and CD44 markers. Results indicated that either CD133 or CD44 positive cells caused about twofold increase in tumor volume compared with the negative cells (p < 0.05). In two groups of cells derived from primary tumors and cell lines, CD133 + cells had 25 and 1.45 times higher tumor incidence potential than CD133 cells, respectively ( p < 0.05). Also, cohort evaluation showed that CD133 overexpression at protein level is a marker of poor overall survival in colorectal cancer (CRC) patients. While CD44 + cells displayed twofold tumorigenicity compared with the negative cells ( p < 0.05), combination of CD44 and CD133 showed about sevenfold tumorigenicity potential ( p < 0.05). In conclusion, the present meta-analysis suggests that CD133 is a robust biomarker to identify primary tumor CSLCs and can be proposed as a prognostic marker of CRC patient whereas it should be used with caution in cell lines. It seems to be more reliable to use CD133 in combination with CD44 as target biomarkers for the isolation of CR-CSLCs in both cell line and primary tumor cells populations.  相似文献   

12.
Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44(+)/CD133(+) prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy.  相似文献   

13.
Tumor-initiating cells or cancer stem cells are a subset of cancer cells that have tumorigenic potential in human cancer. Although several markers have been proposed to distinguish tumor-initiating cells from colorectal cancer cells, little is known about how this subpopulation contributes to tumorigenesis. Here, we characterized a tumor-initiating cell subpopulation from Caco-2 colorectal cancer cells. Based on the findings that Caco-2 cell subpopulations express different cell surface markers, we were able to discriminate three main fractions, CD44-CD133-, CD44-CD133+, and CD44+CD133+ subsets, and characterized their biochemical and tumorigenic properties. Our results show that CD44+CD133+ cells possessed an unusual capacity to proliferate and could form tumors when transplanted into NSG mice. Additionally, primary tumors grown from CD44+CD133+ Caco-2 cells contained mixed populations of CD44+CD133+ and non-CD44+CD133+ Caco-2 cells, indicating that the full phenotypic heterogeneity of the parental Caco-2 cells was re-created. Notably, only the CD44+CD133+ subset of Caco-2-derived primary tumors had tumorigenic potential in NSG mice, and the tumor growth of CD44+CD133+ cells was faster in secondary xenografts than in primary transplants. Gene expression analysis revealed that the Wnt/β-catenin pathway was over-activated in CD44+CD133+ cells, and the growth and tumorigenic potential of this subpopulation were significantly suppressed by small-molecule Wnt/β-catenin signaling inhibitors. Our findings suggest that the CD44+CD133+ subpopulation from Caco-2 cells was highly enriched in tumorigenic cells and will be useful for investigating the mechanisms leading to human colorectal cancer development.  相似文献   

14.
Cancer stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Cancer stem cells are thus likely to be responsible for maintaining or spreading a cancer, and may be the most relevant targets for cancer therapy. The CD133 glycoprotein was recently described as a reliable cancer stem-like cell marker in colon carcinoma. CD133+ cells are both necessary and sufficient to initiate tumour growth in animal models. The CD133+ cell population and spheroid cultures contain cells expressing the stem cell marker Musashi-1 which is involved in maintenance of stem cell fate in several tissues and importantly, this expression is maintained in stem-like cells derived from xenografted tumours. Here we discuss the potential use of the CD133 antigen in concert with Musashi-1 as markers to identify the colon cancer stem cell population. Since the up-regulation of IL-4 cytokine was recently demonstrated to constitute an important mechanism that protects the tumorigenic CD133+ cells from apoptosis, the potential benefits of standard chemotherapeutic treatments in combination with IL-4 inhibitors in the context of human colon carcinoma, are also discussed.  相似文献   

15.
Glioblastoma multiforme (GBM) is the most common adult malignant glioma with poor prognosis due to the resistance to radiotherapy and chemotherapy, which might be critically involved in the repopulation of cancer stem cells (CSCs) after treatment. We had investigated the characteristics of cancer stem-like side population (SP) cells sorted from GBM cells, and studied the effect of Honokiol targeting on CSCs. GBM8401 SP cells possessed the stem cell markers, such as nestin, CD133 and Oct4, and the expressions of self-renewal related stemness genes, such as SMO, Notch3 and IHH (Indian Hedgehog). Honokiol inhibited the proliferation of both GBM8401 parental cells and SP cells in a dose-dependent manner, the IC50 were 5.3±0.72 and 11±1.1 μM, respectively. The proportions of SP in GBM8401 cells were diminished by Honokiol from 1.5±0.22% down to 0.3±0.02% and 0.2±0.01% at doses of 2.5 μM and 5 μM, respectively. The SP cells appeared to have higher expression of O 6-methylguanine-DNA methyltransferase (MGMT) and be more resistant to Temozolomide (TMZ). The resistance to TMZ could be only slightly reversed by MGMT inhibitor O 6-benzylguanine (O 6-BG), but markedly further enhanced by Honokiol addition. Such significant enhancement was accompanied with the higher induction of apoptosis, greater down-regulation of Notch3 as well as its downstream Hes1 expressions in SP cells. Our data indicate that Honokiol might have clinical benefits for the GBM patients who are refractory to TMZ treatment.  相似文献   

16.
IntroductionMicrochimeric cells have been studied for over a decade, with conflicting reports on their presence and role in autoimmune and other inflammatory diseases. To determine whether microchimeric cells were pathogenic or mediating tissue repair in inflammatory myopathies, we phenotyped and quantified microchimeric cells in juvenile idiopathic inflammatory myopathies (JIIM), muscular dystrophy (MD), and noninflammatory control muscle tissues.MethodFluorescence immunophenotyping for infiltrating cells with sequential fluorescence in situ hybridization was performed on muscle biopsies from ten patients with JIIM, nine with MD and ten controls.ResultsMicrochimeric cells were significantly increased in MD muscle (0.079 ± 0.024 microchimeric cells/mm2 tissue) compared to controls (0.019 ± 0.007 cells/mm2 tissue, p = 0.01), but not elevated in JIIM muscle (0.043 ± 0.015 cells/mm2). Significantly more CD4+ and CD8+ microchimeric cells were in the muscle of patients with MD compared with controls (mean 0.053 ± 0.020/mm2 versus 0 ± 0/mm2p = 0.003 and 0.043 ± 0.023/mm2 versus 0 ± 0/mm2p = 0.025, respectively). No differences in microchimeric cells between JIIM, MD, and noninflammatory controls were found for CD3+, Class II+, CD25+, CD45RA+, and CD123+ phenotypes, and no microchimeric cells were detected in CD20, CD83, or CD45RO populations. The locations of microchimeric cells were similar in all three conditions, with MD muscle having more microchimeric cells in perimysial regions than controls, and JIIM having fewer microchimeric muscle nuclei than MD. Microchimeric inflammatory cells were found, in most cases, at significantly lower proportions than autologous cells of the same phenotype.ConclusionsMicrochimeric cells are not specific to autoimmune disease, and may not be important in muscle inflammation or tissue repair in JIIM.  相似文献   

17.
探讨前列腺癌微环境中DCs与各类血细胞的关系及临床预后价值.选取16例良性前列腺增生和42例前列腺癌患者的前列腺组织作为研究对象,以S-100、CD83、CD208抗体作为不同状态的DC标记物进行MaxVision法免疫组化染色和Masson染色.采用图像分析软件进行图像处理,其统计数据与患者外周血细胞计数进行统计学分析.S-100、CD83阳性细胞计数和胶原蛋白含量在前列腺增生组较前列腺癌组高(P<0.05).CD208阳性细胞计数在前列腺增生组和前列腺癌组无差异(P>0.05).S-100阳性细胞计数与Gleason评分呈负相关关系(r=-0.533,P<0.01).血小板计数在前列腺癌组较前列腺增生组高(P<0.05).单核细胞计数偏高为前列腺癌危险因素(P<0.05).各类型树突状细胞与血小板计数无直线相关关系(P>0.05).外周血各成熟类型细胞与前列腺癌微环境中DCs计数无明显相关关系.S-100标记的树突状细胞计数可能与前列腺癌患者的预后相关.更大量样本的分析有助于证实单核细胞计数与前列腺癌的发病以及S-100标记树突状细胞计数与前列腺癌的预后之间的相关性.  相似文献   

18.
In the human fetal kidney (HFK) self-renewing stem cells residing in the metanephric mesenchyme (MM)/blastema are induced to form all cell types of the nephron till 34th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms'' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms'' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2) are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24) in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (<10% of HFK cells) and were mostly present within the EpCAMneg and EpCAMdim fractions, indicating putative stem/progenitor markers. In contrast, single markers such as CD24 and CD133 as well as double-positive CD24+CD133+ cells comprise >50% of HFK cells and predominantly co-express EpCAMbright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM+EpCAM- and to a lesser extent in NCAM+EpCAM+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM+EpCAM+FZD7+), MM stem cells (NCAM+EpCAM-FZD7+) or both (NCAM+FZD7+). These results and concepts provide a framework for developing cell selection strategies for human renal cell-based therapies.  相似文献   

19.
ObjectiveMesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation.ResultsThere was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells.ConclusionThis is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.  相似文献   

20.
Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin alpha2beta1(hi) and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 microg/ml insulin (DMEM+10% FBS+Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号