首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
3.
Methanol expression regulator 1 (Mxr1p) is a zinc finger protein that regulates the expression of genes encoding enzymes of the methanol utilization pathway in the methylotrophic yeast Pichia pastoris by binding to Mxr1p response elements (MXREs) present in their promoters. Here we demonstrate that Mxr1p is a key regulator of acetate metabolism as well. Mxr1p is cytosolic in cells cultured in minimal medium containing a yeast nitrogen base, ammonium sulfate, and acetate (YNBA) but localizes to the nucleus of cells cultured in YNBA supplemented with glutamate or casamino acids as well as nutrient-rich medium containing yeast extract, peptone, and acetate (YPA). Deletion of Mxr1 retards the growth of P. pastoris cultured in YNBA supplemented with casamino acids as well as YPA. Mxr1p is a key regulator of ACS1 encoding acetyl-CoA synthetase in cells cultured in YPA. A truncated Mxr1p comprising 400 N-terminal amino acids activates ACS1 expression and enhances growth, indicating a crucial role for the N-terminal activation domain during acetate metabolism. The serine 215 residue, which is known to regulate the expression of Mxr1p-activated genes in a carbon source-dependent manner, has no role in the Mxr1p-mediated activation of ACS1 expression. The ACS1 promoter contains an Mxr1p response unit (MxRU) comprising two MXREs separated by a 30-bp spacer. Mutations that abrogate MxRU function in vivo abolish Mxr1p binding to MxRU in vitro. Mxr1p-dependent activation of ACS1 expression is most efficient in cells cultured in YPA. The fact that MXREs are conserved in genes outside of the methanol utilization pathway suggests that Mxr1p may be a key regulator of multiple metabolic pathways in P. pastoris.  相似文献   

4.
5.
6.
The promoter region of copper-inducible laccase gene, LCC1, from Pycnoporus coccineus was explored in the heterologous expression of foreign protein in Pichia pastoris. The promoter region (PPPLCC1) was isolated and used to replace the methanol-inducible AOXI promoter (PAOX1) of pPICHOLI-2, an episomal expression vector for P. pastoris, to generate a new copper-inducible expression vector. The promoter activity of PPPLCC1 was compared with those of PAOX1 and PCUP1, a copper-inducible promoter of a commercial vector pPICHOLI-C, using a laccase gene as a reporter gene in P. pastoris GS115. Reporter laccase activity of the culture broth reached 182 and 43 units/L for PPPLCC1 and PCUP1, respectively, after induction with 0.2 mM CuSO4 at OD600 = 1 and culture for 120 h at 15°C in complex medium containing 1% glucose. For PAOX1 activity, yeast cells harboring PAOX1-laccase plasmid were cultured for 120 h at 15°C in complex medium with intermittent feeding with 1% methanol every 12 h to avoid methanol toxicity. Laccase activity of culture broth was 124 units/L. Conclusively, PPPLCC1 is a new copper-inducible promoter that shows superior performance in terms of efficiency of laccase production compared to commercial vectors. PPPLCC1 is additionally superior to PAOX1 since it does not require laborious feeding with a carbon source.  相似文献   

7.

Background

The methanol-regulated AOX1 promoter (PAOX1) is the most widely used promoter in the production of recombinant proteins in the methylotrophic yeast Pichia pastoris. However, as the tight regulation and methanol dependence of PAOX1 restricts its application, it is necessary to develop a flexible induction system to avoid the problems of methanol without losing the advantages of PAOX1. The availability of synthetic biology tools enables researchers to reprogram the cellular behaviour of P. pastoris to achieve this goal.

Results

The characteristics of PAOX1 are highly related to the expression profile of methanol expression regulator 1 (Mxr1). In this study, we applied a biologically inspired strategy to reprogram regulatory networks in P. pastoris. A reprogrammed P. pastoris was constructed by inserting a synthetic positive feedback circuit of Mxr1 driven by a weak AOX2 promoter (PAOX2). This novel approach enhanced PAOX1 efficiency by providing extra Mxr1 and generated switchable Mxr1 expression to allow PAOX1 to be induced under glycerol starvation or carbon-free conditions. Additionally, the inhibitory effect of glycerol on PAOX1 was retained because the synthetic circuit was not activated in response to glycerol. Using green fluorescent protein as a demonstration, this reprogrammed P. pastoris strain displayed stronger fluorescence intensity than non-reprogrammed cells under both methanol induction and glycerol starvation. Moreover, with single-chain variable fragment (scFv) as the model protein, increases in extracellular scFv productivity of 98 and 269% were observed in Mxr1-reprogrammed cells under methanol induction and glycerol starvation, respectively, compared to productivity in non-reprogrammed cells under methanol induction.

Conclusions

We successfully demonstrate that the synthetic positive feedback circuit of Mxr1 enhances recombinant protein production efficiency in P. pastoris and create a methanol-free induction system to eliminate the potential risks of methanol.
  相似文献   

8.
9.
FIP-fve is a bioactive protein isolated from the mushroom Flammulina velutipes, which belongs to the fungal immunomodulatory protein (FIP) family and demonstrates several kinds of biological activities including anti-allergy, anti-tumor and immunomodulation. In the current study, the FIP-fve gene was cloned and expressed in the yeast Pichia pastoris GS115, and its correctness was confirmed by SDS-PAGE and Western blot. Optimal expression of rFIP-fve was observed when the P. pastoris cells were cultured in 1% methanol for 96 h, which resulted in a yield of 258.2 mg l−1. The rFIP-fve protein was subsequently purified via ammonium sulfate precipitation and Sephadex G-100 gel chromatography. In vitro bioactivity examination showed that rFIP-fve could agglutinate human red blood cells and stimulate the cell viability of murine splenocytes. The immunomodulatory capacity and anti-tumor activity of rFIP-fve were demonstrated by enhanced interleukin-2 secretion and interferon-γ release from the murine lymphocytes, similar to the biological FIP-fve. In conclusion, the FIP-fve gene was functionally and effectively expressed in P. pastoris, and rFIP-fve displayed biological activities similar to those of native FIP-fve. These results indicated the potential use of rFIP-fve from P. pastoris as an effective and feasible source for therapeutic studies and medical applications.  相似文献   

10.
The crab antimicrobial peptide scygonadin is confirmed to have antimicrobial activity against bacteria and it is probably associated with the reproductive immunity in Scylla paramamosain. To obtain large quantity of scygonadin for further biological assays, a 306 bp cDNA sequence encoding the mature peptide of scygonadin was cloned into a secretion vector of pPIC9K, and a high-level of the recombinant scygonadin was achieved in Pichia pastoris. The optimal expression condition was determined as incubation with 0.5% methanol for 48 h at 28 °C under pH 6.0, and a total of 70 mg scygonadin was expressed in 1 L culture medium. The recombinant product was purified and 97% pure scygonadin was obtained using immobilized metal affinity chromatography with a yield of 46 mg/L. The recombinant scygonadin was confirmed using SDS-PAGE analysis and MS-fingerprinting. P. pastoris-derived scygonadin exhibited relatively higher antimicrobial activities against bacteria than Escherichia coli-derived scygonadin. The antimicrobial activity of the recombinant scygonadin against pathogenic Aeromonas hydrophila showed salt resistant and the killing kinetics of A. hydrophila was time dependent. Besides, the antiviral assay demonstrated that scygonadin could interfere with white spot syndrome virus (WSSV) replication in vitro-cultured crayfish haematopoietic (Hpt) cells. Taken together, this is the first report on the heterologous expression of scygonadin in P. pastoris, and P. pastoris is an effective expression system for producing large quantities of biological active scygonadin for both research and agricultural application.  相似文献   

11.
To develop an efficient way to produce S-adenosylmethionine (SAM), methionine adenosyltransferase gene (mat) from Streptomyces spectabilis and Vitreoscilla hemoglobin gene (vgb) were coexpressed intracellularly in Pichia pastoris, both under control of methanol-inducible promoter. Expression of mat in P. pastoris resulted in about 27 times higher specific activity of methionine adenosyltransferase (SMAT) and about 19 times higher SAM production relative to their respective control, suggesting that overexpression of mat could be used as an efficient method for constructing SAM-accumulating strain. Under induction concentration of 0.8 and 2.4% methanol, coexpression of vgb improved, though to different extent, cell growth, SAM production, and respiratory rate. However, the effects of VHb on SAM content (specific yield of SAM production) and SMAT seemed to be methanol concentration-dependent. When cells were induced with 0.8% methanol, no significant effects of VHb expression on SAM content and specific SMAT could be detected. When the cells were induced with 2.4% methanol, vgb expression increased SAM content significantly and depressed SMAT remarkably. We suggested that under our experimental scheme, the presence of VHb might improve ATP synthesis rate and thus improve cell growth and SAM production in the recombinant P. pastoris.  相似文献   

12.
The medaka fish α-amylase was expressed and purified. The expression systems were constructed using methylotrophic yeast Pichia pastoris, and the recombinant proteins were secreted into the culture medium. Purified recombinant α-amylase exhibited starch hydrolysis activity. The optimal pH, denaturation temperature, and KM and Vmax values were determined; chloride ions were essential for enzyme activity. The purified protein was also crystallized and examined by X-ray crystallography. The structure has the (α/β)8 barrel fold, as do other known α-amylases, and the overall structure is very similar to the structure of vertebrate (human and pig) α-amylases. A novel expression plasmid was developed. Using this plasmid, high-throughput construction of an expression system by homologous recombination in P. pastoris cells, previously reported for membrane proteins, was successfully applied to the secretory protein.  相似文献   

13.
Summary A synthetic gene encoding aprotinin (bovine pancreatic trypsin, inhibitor) was fused to theSaccharomyces cerevisiae prepro alpha mating factor leader sequence at the dibasic amino acid processing site.Pichia pastoris strains were developed to'express one or multiple copies of a methanol-inducible expression cassette containing the gene fusion.P. pastoris containing a single copy of the vector secreed approximately 150 mg/l of immunoreactive protein. A construct bearing five copies of the expression cassette secreted 930 mg/l of aprotinin. The purified aprotinin molecule was equipoten with the native molecule in a trypsin inhibition assay. Protein sequence analysis showed that the alpha factor-aprotinin fusion was not processed at the basic amino acid residues Lys-Arg. Instead, recombinant aprotinin had additional N-terminal amino acids derived from prepro alpha factor. The N-terminal extension was variably 11 or 4 amino acids. Inclusion of the spacer DNA sequence encoding Glu and Ala between aprotinin and the Lys-Arg processing site led to the secretion of a biologically active aprotinin containing only a Glu-Ala N-terminal extension.  相似文献   

14.
15.
Glycoengineering technology can elucidate and exploit glycan related structure-function relationships for therapeutic proteins. Glycoengineered yeast has been established as a safe, robust, scalable, and economically viable expression platform. It has been found that specific productivity of antibodies in glycoengineered Pichia pastoris is a non-linear function of specific growth rate that is dictated by a limited methanol feed rate. The optimal carbon-limited cultivation requires an exponential methanol feed rate with an increasing biomass concentration and more significantly an increase in heat and mass transfer requirements that often become the limiting factor in scale-up. Both heat and mass transfer are stoichiometrically linked to the oxygen uptake rate. Consequently an oxygen-limited cultivation approach was evaluated to limit the oxygen uptake rate and ensure robust and reliable scale-up. The oxygen-limited process not only limited the maximum oxygen uptake rate (and consequently the required heat removal rate) in mut+ P. pastoris strains but also enabled extension of the induction phase leading to an increased antibody concentration (1.9 g L−1 vs. 1.2 g L−1), improved N-glycan composition and galactosylation, and reduced antibody fragmentation. Furthermore, the oxygen-limited process was successfully scaled to manufacturing pilot scale and thus presents a promising process option for the glycoengineered yeast protein expression platform.  相似文献   

16.
将华根霉脂肪酶基因克隆到甲基营养型毕赤酵母中表达,以甲醇利用快型菌株为宿主,在7 L发酵罐水平对脂肪酶基因拷贝数分别为3、5、6的3株基因重组菌——XY RCL-3、XY RCL-5、XY RCL-6进行高密度发酵调控,同时研究了甲醇浓度对表达华根霉脂肪酶的影响。结果表明,XY RCL-5在相同条件下发酵产酶能力高于XY RCL-6和XY RCL-3,最适甲醇诱导浓度控制在0.1%±0.02%时,酶活可达到12 500 U/mL,菌体干重达到204 g/L,蛋白浓度也能达到8.02 g/L。  相似文献   

17.
Microorganisms, especially endophytic fungi that reside in the tissue of living mangrove plants, seem to play a major role in meeting the general demand for new biologically active substances. During the course of screening for biologically active secondary metabolites from marine microorganisms, an antibiotic compound containing an indole and a diketopiperazine moiety was isolated from the culture medium of Penicilliumchrysogenum, (MTCC 5108), an endophytic fungus on the mangrove plant Porteresiacoarctata (Roxb.). The cell free culture medium of P. chrysogenum showed significant activity against Vibriocholerae, (MCM B-322), a pathogen causing cholera in humans. Bioassay guided chemical characterization of the crude extract led to the isolation of a secondary metabolite possessing a molecular formula C19H21O2N3. Its antibacterial activity was comparable with standard antibiotic, streptomycin. This compound (1) was found to be (3,1′-didehydro-3[2″(3′″,3′″-dimethyl-prop-2-enyl)-3″-indolylmethylene]-6-methyl pipera-zine-2,5-dione) on the basis of mass spectrometry, infrared spectroscopy and one and two-dimensional nuclear magnetic resonance analysis.  相似文献   

18.
19.
Pichia pastoris is a methylotropic yeast that has gained great importance as an organism for protein expression in recent years. Here, we report the expression of recombinant human erythropoietin (rhEPO) in glycoengineered P. pastoris. We show that glycosylation fidelity is maintained in fermentation volumes spanning six orders of magnitude and that the protein can be purified to high homogeneity. In order to increase the half-life of rhEPO, the purified protein was coupled to polyethylene glycol (PEG) and then compared to the currently marketed erythropoiesis stimulating agent, Aranesp® (darbepoetin). In in vitro cell proliferation assays the PEGylated protein was slightly, and the non-PEGylated protein was significantly more active than comparator. Pharmacodynamics as well as pharmacokinetic activity of PEGylated rhEPO in animals was comparable to that of Aranesp®. Taken together, our results show that glycoengineered P. pastoris is a suitable production host for rhEPO, yielding an active biologic that is comparable to those produced in current mammalian host systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号