首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Networks of signaling pathways perform complex temporal decoding functions in diverse biological systems, including the synapse, development, and bacterial chemotaxis. This paper examines temporal filtering and tuning properties of synaptic signaling pathways as a possible substrate for emergent temporal decoding. A mass action kinetic model of 16 synaptic signaling pathways was used to dissect out the contribution of these pathways in linear cascades and when coupled to form a network. The model predicts two primary mechanisms of temporal tuning of pathways: a weighted summation of responses of pathways with different timings and the presence of biochemical feedback loop(s) with emergent dynamics. Regulatory inputs act differently on these two tuning mechanisms. In the first case, regulators act like a gain-control on pathways with different intrinsic tuning. In the case of feedback loops, the temporal properties of the loop itself are changed. These basic tuning mechanisms may underlie specialized temporal tuning functions in more complex signaling systems in biology.  相似文献   

2.
3.
Recent work on the insect olfactory system has shown that its mushroom bodies (one of its major components) are involved in the fine discrimination of odours and that the temporal organisation of spike discharges plays a fundamental role. We propose here a model of a network that is able to decode the temporal patterns which characterise an odour. This model has three fundamental properties that seem to exist in all mushroom bodies of insects studied so far: a) long lasting inhibitions with rebounds, able to facilitate delayed spike generation; b) synaptic plasticity, which allows the network to learn to recognise temporal patterns; c) above all a large interconnection, which allows this network to recognise intervals of various duration. This model thus appears suited to identify combinations of temporal patterns in the dendrites of Kenyon cells (the principal cells in the calyces of the mushroom bodies). Moreover, the mushroom bodies integrate multimodal inputs, suggesting that the detection of temporal patterns may be extended to the detection of a complex environment, combining in particular olfactive and visual inputs.  相似文献   

4.
The synaptic signaling network is capable of sophisticated cellular computations. These include the ability to respond selectively to different patterns of input, and to sustain changes in response over long periods. The small volume of the synapse complicates the analysis of signaling because the chemical environment is strongly affected by diffusion and stochasticity. This study is based on an updated version of a previously proposed synaptic signaling circuit (Bhalla and Iyengar, 1999) and analyzes three network computation properties in small volumes: bistability, thresholding, and pattern selectivity. Simulations show that although there are diffusive regimes in which bistability may persist, chemical noise at small volumes overwhelms bistability. In the deterministic situation, the network exhibits a sharp threshold for transition between lower and upper stable states. This transition is broadened and individual runs partition between lower and upper states, when stochasticity is considered. The third network property, pattern selectivity, is severely degraded at synaptic volumes. However, there are regimes in which a process similar to stochastic resonance operates and amplifies pattern selectivity. These results imply that simple scaling of signaling conditions to femtoliter volumes is unlikely, and microenvironments, such as reaction complex formation, may be essential for reliable small-volume signaling.  相似文献   

5.
Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well understood how biophysically different neurons process synaptic inputs in natural conditions, i.e., when experiencing intense synaptic bombardment in vivo. While distinct cell types might process synaptic inputs into different patterns of action potentials representing specific “motifs” of network activity, standard methods of electrophysiology are not well suited to resolve such questions. In the current paper we performed dynamic clamp experiments with simulated synaptic inputs that were presented to three types of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST) of the rat. Our analysis on the temporal structure of firing showed that the three types of jcBNST neurons did not produce qualitatively different spike responses under identical patterns of input. However, we observed consistent, cell type dependent variations in the fine structure of firing, at the level of single spikes. At the millisecond resolution structure of firing we found high degree of diversity across the entire spectrum of neurons irrespective of their type. Additionally, we identified a new cell type with intrinsic oscillatory properties that produced a rhythmic and regular firing under synaptic stimulation that distinguishes it from the previously described jcBNST cell types. Our findings suggest a sophisticated, cell type dependent regulation of spike dynamics of neurons when experiencing a complex synaptic background. The high degree of their dynamical diversity has implications to their cooperative dynamics and synchronization.  相似文献   

6.
The relay of extracellular signals into changes in cellular physiology involves a Byzantine array of intracellular signaling pathways, of which cytoplasmic protein kinases are a crucial component. In the nervous system, a great deal of effort has focused on understanding the conversion of patterns of synaptic activity into long-lasting changes in synaptic efficacy that are thought to underlie memory. The goal is both to understand synaptic plasticity mechanisms, such as long-term potentiation, at a molecular level and to understand the relationship of these synaptic mechanisms to behavioral memory. Although both involve the activation of multiple signaling pathways, recent studies are beginning to define discrete roles and mechanisms for individual kinases in the different temporal phases of both synaptic and behavioral plasticity.  相似文献   

7.
8.
This paper describes an unsupervised neural network model for learning and recall of temporal patterns. The model comprises two groups of synaptic weights, named competitive feedforward and Hebbian feedback, which are responsible for encoding the static and temporal features of the sequence respectively. Three additional mechanisms allow the network to deal with complex sequences: context units, a neuron commitment equation, and redundancy in the representation of sequence states. The proposed network encodes a set of robot trajectories which may contain states in common, and retrieves them accurately in the correct order. Further tests evaluate the fault-tolerance and noise sensitivity of the proposed model.  相似文献   

9.
Many hormones are released in pulsatile patterns. This pattern can be modified, for instance by changing pulse frequency, to encode relevant physiological information. Often other properties of the pulse pattern will also change with frequency. How do signaling pathways of cells targeted by these hormones respond to different input patterns? In this study, we examine how a given dose of hormone can induce different outputs from the target system, depending on how this dose is distributed in time. We use simple mathematical models of feedforward signaling motifs to understand how the properties of the target system give rise to preferences in input pulse pattern. We frame these problems in terms of frequency responses to pulsatile inputs, where the amplitude or duration of the pulses is varied along with frequency to conserve input dose. We find that the form of the nonlinearity in the steady state input-output function of the system predicts the optimal input pattern. It does so by selecting an optimal input signal amplitude. Our results predict the behavior of common signaling motifs such as receptor binding with dimerization, and protein phosphorylation. The findings have implications for experiments aimed at studying the frequency response to pulsatile inputs, as well as for understanding how pulsatile patterns drive biological responses via feedforward signaling pathways.  相似文献   

10.
Rabang CF  Bartlett EL 《PloS one》2011,6(12):e29375
Acoustic stimuli are often represented in the early auditory pathway as patterns of neural activity synchronized to time-varying features. This phase-locking predominates until the level of the medial geniculate body (MGB), where previous studies have identified two main, largely segregated response types: Stimulus-synchronized responses faithfully preserve the temporal coding from its afferent inputs, and Non-synchronized responses, which are not phase locked to the inputs, represent changes in temporal modulation by a rate code. The cellular mechanisms underlying this transformation from phase-locked to rate code are not well understood. We use a computational model of a MGB thalamocortical neuron to test the hypothesis that these response classes arise from inferior colliculus (IC) excitatory afferents with divergent properties similar to those observed in brain slice studies. Large-conductance inputs exhibiting synaptic depression preserved input synchrony as short as 12.5 ms interclick intervals, while maintaining low firing rates and low-pass filtering responses. By contrast, small-conductance inputs with Mixed plasticity (depression of AMPA-receptor component and facilitation of NMDA-receptor component) desynchronized afferent inputs, generated a click-rate dependent increase in firing rate, and high-pass filtered the inputs. Synaptic inputs with facilitation often permitted band-pass synchrony along with band-pass rate tuning. These responses could be tuned by changes in membrane potential, strength of the NMDA component, and characteristics of synaptic plasticity. These results demonstrate how the same synchronized input spike trains from the inferior colliculus can be transformed into different representations of temporal modulation by divergent synaptic properties.  相似文献   

11.
Synapses may undergo long-term increases or decreases in synaptic strength dependent on critical differences in the timing between pre-and postsynaptic activity. Such spike-timing-dependent plasticity (STDP) follows rules that govern how patterns of neural activity induce changes in synaptic strength. Synaptic plasticity in the dorsal cochlear nucleus (DCN) follows Hebbian and anti-Hebbian patterns in a cell-specific manner. Here we show that these opposing responses to synaptic activity result from differential expression of two signaling pathways. Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling underlies Hebbian postsynaptic LTP in principal cells. By contrast, in interneurons, a temporally precise anti-Hebbian synaptic spike-timing rule results from the combined effects of postsynaptic CaMKII-dependent LTP and endocannabinoid-dependent presynaptic LTD. Cell specificity in the circuit arises from selective targeting of presynaptic CB1 receptors in different axonal terminals. Hence, pre- and postsynaptic sites of expression determine both the sign and timing requirements of long-term plasticity in interneurons.  相似文献   

12.

Background  

Release of immuno-regulatory cytokines and chemokines during inflammatory response is mediated by a complex signaling network. Multiple stimuli produce different signals that generate different cytokine responses. Current knowledge does not provide a complete picture of these signaling pathways. However, using specific markers of signaling pathways, such as signaling proteins, it is possible to develop a 'coarse-grained network' map that can help understand common regulatory modules for various cytokine responses and help differentiate between the causes of their release.  相似文献   

13.
Resistance gene-dependent disease resistance to pathogenic microorganisms is mediated by genetically separable regulatory pathways. Using the GeneChip Arabidopsis genome array, we compared the expression profiles of approximately 8,000 Arabidopsis genes following activation of three RPP genes directed against the pathogenic oomycete Peronospora parasitica. Judicious choice of P. parasitica isolates and loss of resistance plant mutants allowed us to compare the responses controlled by three genetically distinct resistance gene-mediated signaling pathways. We found that all three pathways can converge, leading to up-regulation of common sets of target genes. At least two temporal patterns of gene activation are triggered by two of the pathways examined. Many genes defined by their early and transient increases in expression encode proteins that execute defense biochemistry, while genes exhibiting a sustained or delayed expression increase predominantly encode putative signaling proteins. Previously defined and novel sequence motifs were found to be enriched in the promoters of genes coregulated by the local defense-signaling network. These putative promoter elements may operate downstream from signal convergence points.  相似文献   

14.
The calcineurin B-like protein–CBL-interacting protein kinase (CBL–CIPK) signaling pathway in plants is a Ca2+-related pathway that responds strongly to both abiotic and biotic environmental stimuli. The CBL–CIPK system shows variety, specificity, and complexity in response to different stresses, and the CBL–CIPK signaling pathway is regulated by complex mechanisms in plant cells. As a plant-specific Ca2+ sensor relaying pathway, the CBL–CIPK pathway has some crosstalk with other signaling pathways. In addition, research has shown that there is crosstalk between the CBL–CIPK pathway and the low-K+ response pathway, the ABA signaling pathway, the nitrate sensing and signaling pathway, and others. In this paper, we summarize and review research discoveries on the CBL–CIPK network. We focus on the different modification and regulation mechanisms (phosphorylation and dephosphorylation, dual lipid modification) of the CBL–CIPK network, the expression patterns and functions of CBL–CIPK network genes, the responses of this network to abiotic stresses, and its crosstalk with other signaling pathways. We also discuss the technical research methods used to analyze the CBL–CIPK network and some of its newly discovered functions in plants.  相似文献   

15.
The precise mapping of how complex patterns of synaptic inputs are integrated into specific patterns of spiking output is an essential step in the characterization of the cellular basis of network dynamics and function. Relative to other principal neurons of the hippocampus, the electrophysiology of CA1 pyramidal cells has been extensively investigated. Yet, the precise input-output relationship is to date unknown even for this neuronal class. CA1 pyramidal neurons receive laminated excitatory inputs from three distinct pathways: recurrent CA1 collaterals on basal dendrites, CA3 Schaffer collaterals, mostly on oblique and proximal apical dendrites, and entorhinal perforant pathway on distal apical dendrites. We implemented detailed computer simulations of pyramidal cell electrophysiology based on three-dimensional anatomical reconstructions and compartmental models of available biophysical properties from the experimental literature. To investigate the effect of synaptic input on axosomatic firing, we stochastically distributed a realistic number of excitatory synapses in each of the three dendritic layers. We then recorded the spiking response to different stimulation patterns. For all dendritic layers, synchronous stimuli resulted in trains of spiking output and a linear relationship between input and output firing frequencies. In contrast, asynchronous stimuli evoked non-bursting spike patterns and the corresponding firing frequency input-output function was logarithmic. The regular/irregular nature of the input synaptic intervals was only reflected in the regularity of output inter-burst intervals in response to synchronous stimulation, and never affected firing frequency. Synaptic stimulations in the basal and proximal apical trees across individual neuronal morphologies yielded remarkably similar input-output relationships. Results were also robust with respect to the detailed distributions of dendritic and synaptic conductances within a plausible range constrained by experimental evidence. In contrast, the input-output relationship in response to distal apical stimuli showed dramatic differences from the other dendritic locations as well as among neurons, and was more sensible to the exact channel densities. Action Editor: Alain Destexhe  相似文献   

16.
17.
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code.  相似文献   

18.
19.
The olfactory bulb employs lateral and feedback inhibitory pathways to distribute odor information across parallel assemblies of mitral and granule cells. The pathways involve dendritic action potentials that can interact with a variety of voltage-dependent conductances and synaptic transmission to produce complex and dynamic patterns of activity. Electrical coupling also helps to ensure proper coordination and synchronization of these patterns. These mechanisms provide numerous options for dynamic modulation and control of signaling in the olfactory bulb.  相似文献   

20.
Time is considered to be an important encoding dimension in olfaction, as neural populations generate odour-specific spatiotemporal responses to constant stimuli. However, during pheromone mediated anemotactic search insects must discriminate specific ratios of blend components from rapidly time varying input. The dynamics intrinsic to olfactory processing and those of naturalistic stimuli can therefore potentially collide, thereby confounding ratiometric information. In this paper we use a computational model of the macroglomerular complex of the insect antennal lobe to study the impact on ratiometric information of this potential collision between network and stimulus dynamics. We show that the model exhibits two different dynamical regimes depending upon the connectivity pattern between inhibitory interneurons (that we refer to as fixed point attractor and limit cycle attractor), which both generate ratio-specific trajectories in the projection neuron output population that are reminiscent of temporal patterning and periodic hyperpolarisation observed in olfactory antennal lobe neurons. We compare the performance of the two corresponding population codes for reporting ratiometric blend information to higher centres of the insect brain. Our key finding is that whilst the dynamically rich limit cycle attractor spatiotemporal code is faster and more efficient in transmitting blend information under certain conditions it is also more prone to interference between network and stimulus dynamics, thus degrading ratiometric information under naturalistic input conditions. Our results suggest that rich intrinsically generated network dynamics can provide a powerful means of encoding multidimensional stimuli with high accuracy and efficiency, but only when isolated from stimulus dynamics. This interference between temporal dynamics of the stimulus and temporal patterns of neural activity constitutes a real challenge that must be successfully solved by the nervous system when faced with naturalistic input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号