首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The family of ATP-gated P2X receptor channels have a conserved protein kinase C site in the N-terminal intracellular domain. This site was disrupted in human P2X(1) receptors by the mutation T18A. T18A mutants were expressed at normal levels in Xenopus oocytes; however, the peak current amplitude was reduced by >99% and showed approximately 10 fold faster desensitisation in response to ATP than wild type (WT) receptors showed. P2X receptor subunits form functional trimeric channels. Co-expression of T18A and WT receptors (90:10 ratio) produced heteromeric T18A/WT channels with the rapid T18A time-course and an approximately 90-fold increase in peak current amplitude compared to T18A. Similarly, T18A dominated the desensitisation phenotype of heteromeric channels composed of T18A and slowly desensitising K68A mutants. These results suggest that phosphorylation of P2X(1) receptors has a dramatic effect on the time-course of the response and may provide a mechanism for regulating channel function.  相似文献   

2.
3.
Polar amino acids in the (putative) distal site are well conserved in P450s. For example, Glu318 for P450d is well conserved as either Glu or Asp for P450s, and Thr319 for P450d is also conserved for P450s. We have studied how mutations at Glu318 and Thr319 of P450d influence the catalytic activity toward methanol associated with the activation of O2. Catalytic activities of Glu318Asp, Glu318Ala, and Thr319Ala mutants toward methanol were 60, 25, and 38%, respectively, compared with that of the wild type. O2 consumption and NADPH oxidation rates of each mutants varied corresponding to the catalytic activities. However, surprisingly, efficiency (16-40%) of incorporated O to the substrate vs. consumed O2 for the Glu318Ala and Thr319Ala mutants were higher than that (9%) of the wild type. In addition, H2O2, which is produced from uncoupling for the wild-type P450d, was not observed for reaction of the Glu318Ala and Thr319Ala mutants. It seemed that consumed O2 was partially reduced to 2 mol of H2O by 4-electron transfer from NADPH for the wild-type and Thr319Ala mutant. However, for the two Glu318 mutants, it appeared that the consumed O2 was not reduced in the same way. It was thus suggested that the conserved Glu318 and Thr319 of P450d are not essential for the activation of O2 in the methanol oxidation. Role of the water molecule or the methanol molecule in the catalytic function was implied.  相似文献   

4.
Xu W  Campillo M  Pardo L  Kim de Riel J  Liu-Chen LY 《Biochemistry》2005,44(49):16014-16025
We applied the substituted cysteine accessibility method (SCAM) to map the residues of the transmembrane helices (TMs) 7 of delta and kappa opioid receptors (deltaOR and kappaOR) that are on the water-accessible surface of the binding-site crevices. A total of 25 consecutive residues (except C7.38) in the TMs 7 were mutated to Cys, one at a time, and each mutant was expressed in HEK 293 cells. Most mutants displayed similar binding affinity for [(3)H]diprenorphine, an antagonist, as the wild types. Pretreatment with (2-aminoethyl)methanethiosulfonate (MTSEA) inhibited [(3)H]diprenorphine binding to eight deltaOR and eight kappaOR mutants. All mutants except deltaOR L7.52(317)C were protected by naloxone from the MTSEA effect, indicating that the side chains of V7.31(296), A7.34(299), I7.39(304), L7.41(306), G7.42(307), P7.50(315), and Y7.53(318) of deltaOR and S7.34(311), F7.37(314), I7.39(316), A7.40(317), L7.41(318), G7.42(319), Y7.43(320), and N7.49(326) of kappaOR are on the water-accessible surface of the binding pockets. Combining the SCAM data with rhodopsin-based molecular models of the receptors led to the following conclusions. (i) The residues of the extracellular portion of TM7 predicted to face TM1 are sensitive to MTSEA in kappaOR but are not in deltaOR. Thus, TM1 may be closer to TM7 in deltaOR than in kappaOR. (ii) MTSEA-sensitive mutants start at position 7.31(296) in deltaOR and at 7.34(311) in kappaOR, suggesting that TM7 in deltaOR may have an additional helical turn (from 7.30 to 7.33). (iii) There is a conserved hydrogen-bond network linking D2.50 of the NLxxxD motif in TM2 with W6.48 of the CWxP motif in TM6. (iv) The NPxxY motif in TM7 interacts with TM2, TM6, and helix 8 to maintain receptors in inactive states. To the best of our knowledge, this represents the first such comparison of the structures of two highly homologous GPCRs.  相似文献   

5.
The aim of the present experiments was to clarify the subunit stoichiometry of P2X2/3 and P2X2/6 receptors, where the same subunit (P2X2) forms a receptor with two different partners (P2X3 or P2X6). For this purpose, four non-functional Ala mutants of the P2X2, P2X3, and P2X6 subunits were generated by replacing single, homologous amino acids particularly important for agonist binding. Co-expression of these mutants in HEK293 cells to yield the P2X2 WT/P2X3 mutant or P2X2 mutant/P2X3 WT receptors resulted in a selective blockade of agonist responses in the former combination only. In contrast, of the P2X2 WT/P2X6 mutant and P2X2 mutant/P2X6 WT receptors, only the latter combination failed to respond to agonists. The effects of α,β-methylene-ATP and 2-methylthio-ATP were determined by measuring transmembrane currents by the patch clamp technique and intracellular Ca(2+) transients by the Ca(2+)-imaging method. Protein labeling, purification, and PAGE confirmed the assembly and surface trafficking of the investigated WT and WT/mutant combinations in Xenopus laevis oocytes. In conclusion, both electrophysiological and biochemical investigations uniformly indicate that one subunit of P2X2 and two subunits of P2X3 form P2X2/3 heteromeric receptors, whereas two subunits of P2X2 and one subunit of P2X6 constitute P2X2/6 receptors. Further, it was shown that already two binding sites of the three possible ones are sufficient to allow these receptors to react with their agonists.  相似文献   

6.
The potentiation of P2X1 receptor currents by phorbol ester (PMA) treatment and stimulation of mGluR1α receptors was sensitive to inhibition of novel forms of protein kinase C. Potentiation was also reduced by co-expression of an amino terminal P2X1 receptor minigene. Cysteine point mutants of residues Tyr16-Gly30 were expressed in Xenopus oocytes. Peak current amplitudes to ATP for Y16C, T18C and R20C mutants were reduced, however this did not result from a decrease in surface expression of the channels. The majority of the mutants showed changes in the time-course of desensitization of ATP evoked currents indicating the important role of this region in regulation of channel properties. PMA and mGluR1α potentiation was abolished for the mutants Y16C, T18C, R20C, K27C and G30C. Minigenes incorporating either Y16C, K27C, V29C or G30C still inhibited PMA responses. However D17C, T18C or R20C mutant minigenes were no longer effective suggesting that these residues are important for interaction with regulatory factors. These results demonstrate that the conserved YXTXK/R sequence and a region with a conserved glycine residue close to the first transmembrane segment contribute to PMA and GPCR regulation of P2X1 receptors.  相似文献   

7.
P2X receptors show marked variations in the time-course of response to ATP application from rapidly desensitizing P2X1 receptors to relatively sustained P2X2 receptors. In this study we have used chimeras between human P2X1 and P2X2 receptors in combination with mutagenesis to address the contribution of the extracellular ligand binding loop, the transmembrane channel, and the intracellular regions to receptor time-course. Swapping either the extracellular loop or both transmembrane domains (TM1 and -2) between the P2X1 and P2X2 receptors had no effect on the time-course of ATP currents in the recipient receptor. These results suggest that the agonist binding and channel-forming portions of the receptor do not play a major role in the control of the time-course. In contrast replacing the amino terminus of the P2X1 receptor with that from the non-desensitizing P2X2 receptor (P2X1-2N) slowed desensitization, and the mirror chimera induced rapid desensitization in the P2X2-1N chimera. These reciprocal effects on time-course can be replicated by changing four variant amino acids just before the first transmembrane (TM1) segment. These pre-TM1 residues also had a dominant effect on chimeras where both TMs had been transferred; mutating the variant amino acids 21-23 to those found in the P2X2 receptor removed desensitization from the P2X1-2TM1/-2 chimera, and the reciprocal mutants induced rapid desensitization in the non-desensitizing P2X2-1TM1/-2 chimera. These results suggest that the intracellular amino terminus, in particular the region just before TM1, plays a dominant role in the regulation of the time-course of ATP evoked P2X receptor currents.  相似文献   

8.
On nociceptive neurons, one important mechanism to generate pain signals is the activation of P2X(3) receptors, which are membrane proteins gated by extracellular ATP. In the presence of the agonist, P2X(3) receptors rapidly desensitize and then recover slowly. One unique property of P2X(3) receptors is the recovery acceleration by extracellular Ca(2+) that can play the role of the gain-setter of receptor function only when P2X(3) receptors are desensitized. To study negatively charged sites potentially responsible for this action of Ca(2+), we mutated 15 non-conserved aspartate or glutamate residues in the P2X(3) receptor ectodomain with alanine and expressed such mutated receptors in human embryonic kidney cells studied with patch clamping. Unlike most mutants, D266A (P2X(3) receptor numbering) desensitized very slowly, indicating that this residue is important for generating desensitization. Recovery appeared structurally distinct from desensitization because E111A and D266A had a much faster recovery and D220A and D289A had a much slower one despite their standard desensitization. Furthermore, E161A, E187A, or E270A mutants showed lessened sensitivity to the action of extracellular Ca(2+), suggesting that these determinants were important for the effect of this cation on desensitization recovery. This study is the first report identifying several negative residues in the P2X(3) receptor ectodomain differentially contributing to the general process of receptor desensitization. At least one residue was important to enable the development of rapid desensitization, whereas others controlled recovery from it or the facilitating action of Ca(2+). Thus, these findings outline diverse potential molecular targets to modulate P2X(3) receptor function in relation to its functional state.  相似文献   

9.
Most microsomal P450s have a conserved "threonine cluster" composed of three Thrs (Thr319, Thr321, Thr322 for P450d) at a putative distal site. An ionic amino acid at 318 is also well conserved as Glu or Asp for most P450s. To understand the role of these conserved polar amino acids at the putative distal site in the catalytic function of microsomal P450, we studied how mutations at this site of P450d influence the activation of molecular oxygen in the reconstituted system. Catalytic activity (0.02 min-1) toward 7-ethoxycoumarin of the Glu318Ala mutant of P450d was just 6% of that (0.33 min-1) of the wild type, while those of Glu318Asp, Thr319Ala, and Thr322Ala were comparable to or even higher than that of the wild type. Consumption rates of O2 and formation rates of H2O2 of those mutants varied in accord with the catalytic activities. Especially, the efficiency (0.5%) of incorporated oxygen atom to the substrate versus produced H2O2 for the Glu318Ala mutant was much lower than that (3.7%) of the wild type, while that (58.8%) for the mutant Glu318Asp was 16-fold higher than that of the wild type. In addition, the autoxidation [Fe(II)---- Fe(III)] rate (0.074 s-1) of the Glu318Ala mutant was much lower than those (0.374-0.803 s-1) of the wild type and other mutants. Thus, we strongly suggest that Glu318 plays an important role in the catalytic function toward 7-ethoxycoumarin of microsomal P450d.  相似文献   

10.
The G(s)-coupled rat A(2B) adenosine receptor (A(2B)-AR) was epitope-tagged at the NH(2) terminus with hemagglutinin (HA) and subjected to progressive deletions or point mutations of the COOH terminus in order to determine regions of the receptor that contribute to agonist-induced desensitization and internalization. When expressed stably in Chinese hamster ovary cells, a mutant receptor in which the final 2 amino acids were deleted, the Leu(330)-stop mutant, underwent rapid agonist-induced desensitization and internalization as did the wild type (WT) receptor. However, the Phe(328) and the Gln(325)-stop mutants were resistant to rapid agonist-induced desensitization and internalization. Co-expression of arrestin-2-green fluorescent protein (arrestin-2-GFP) with WT receptor or Leu(330)-stop mutant resulted in rapid translocation of arrestin-2-GFP from cytosol to membrane upon agonist addition. On the other hand, agonist activation of the Phe(328)-stop or Gln(325)-stop mutant did not result in translocation of arrestin-2-GFP from cytosol. A COOH terminus point mutant, S329G, was also unable to undergo rapid agonist-induced desensitization and internalization, indicating that Ser(329) is a critical residue for these processes. A further deletion mutant (Ser(326)-stop) unexpectedly underwent rapid agonist-induced desensitization and internalization. However, activation of this mutant did not promote translocation of arrestin-2-GFP from cytosol to membrane. In addition, whereas WT receptor internalization was markedly inhibited by co-expression of dominant negative mutants of arrestin-2 (arrestin-2-(319-418)), dynamin (dynamin K44A), or Eps-15 (EDelta95-295), Ser(326)-stop receptor internalization was only inhibited by dominant negative mutant dynamin. Taken together these results indicate that Ser(329), close to the COOH terminus of the rat A(2B)-AR, is critical for the rapid agonist-induced desensitization and internalization of the receptor. However, deletion of the COOH terminus also uncovers a motif that is able to redirect internalization of the receptor to an arrestin- and clathrin-independent pathway.  相似文献   

11.
Ion channel opening and desensitization is a fundamental process in neurotransmission. The ATP-gated P2X1 receptor (P2X1R) shows rapid and long-lasting desensitization upon agonist binding. This makes the electrophysiological investigation of its desensitization process, agonist unbinding, and recovery from desensitization a challenging task. Here, we show that the fluorescent agonist Alexa-647-ATP is a potent agonist at the P2X1R and a versatile tool to directly visualize agonist binding and unbinding. We demonstrate that the long-lasting desensitization of the P2X1R is due to both slow unbinding of agonist from the desensitized receptor and agonist mediated receptor internalization. Furthermore, the unbinding of the agonist Alexa-647-ATP from the desensitized receptor is accelerated in the continuous presence of competitive ligand. Modeling of our data indicates that three agonist molecules are required to drive the receptor into desensitization. Direct visualization of ligand unbinding from the desensitized receptor demonstrates the cooperativity of this process.  相似文献   

12.
Previously, we demonstrated that the γC subunit of type I IL-4 receptor was required for robust tyrosine phosphorylation of the downstream adapter protein, IRS-2, correlating with the expression of genes (ArgI, Retnla, and Chi3l3) characteristic of alternatively activated macrophages. We located an I4R-like motif (IRS-2 docking sequence) in the γC cytoplasmic domain but not in the IL-13Rα1. Thus, we predicted that the γC tail directed enhanced IRS-2 phosphorylation. To test this, IL-4 signaling responses were examined in a mutant of the key I4R motif tyrosine residue (Y325F) and different γC truncation mutants (γ285, γ308, γ318, γ323, and γFULL LENGTH (FL)) co-expressed in L-cells or CHO cells with wild-type (WT) IL-4Rα. Surprisingly, IRS-1 phosphorylation was not diminished in Y325F L-cell mutants suggesting Tyr-325 was not required for the robust insulin receptor substrate response. IRS-2, STAT6, and JAK3 phosphorylation was observed in CHO cells expressing γ323 and γFL but not in γ318 and γ285 mutants. In addition, when CHO cells expressed γ318, γ323, or γFL with IL-2Rβ, IL-2 induced phospho-STAT5 only in the γ323 and γFL clones. Our data suggest that a smaller (5 amino acid) interval than previously determined is necessary for JAK3 activation/γC-mediated signaling in response to IL-4 and IL-2. Chimeric receptor chains of the γC tail fused to the IL-13Rα1 extracellular and transmembrane domain did not elicit robust IRS-2 phosphorylation in response to IL-13 suggesting that the extracellular/transmembrane domains of the IL-4/IL-13 receptor, not the cytoplasmic domains, control signaling efficiency. Understanding this pathway fully will lead to rational drug design for allergic disease.  相似文献   

13.
The P2X7 receptor (P2X7R) is a member of the ATP-gated ion channel family that exhibits distinct electrophysiological and pharmacological properties. This includes low sensitivity to ATP, lack of desensitization, a sustained current growth during prolonged receptor stimulation accompanied with development of permeability to large organic cations, and the coupling of receptor activation to cell blebbing and death. The uniquely long C-terminus of P2X7R accounts for many of these receptor-specific functions. The aim of this study was to understand the role of conserved ectodomain cysteine residues in P2X7R function. Single- and double-point threonine mutants of C119-C168, C129-C152, C135-C162, C216-C226, and C260-C269 cysteine pairs were expressed in HEK293 cells and studied using whole-cell current recording. All mutants other than C119T-P2X7R responded to initial and subsequent application of 300-μM BzATP and ATP with small amplitude monophasic currents or were practically nonfunctional. The mutagenesis-induced loss of function was due to decreased cell-surface receptor expression, as revealed by assessing levels of biotinylated mutants. Coexpression of all double mutants with the wild-type receptor had a transient or, in the case of C119T/C168T double mutant, sustained inhibitory effect on receptor trafficking. The C119T-P2X7R mutant was expressed on the plasma membrane and was fully functional with a slight decrease in the sensitivity for BzATP, indicating that interaction of liberated Cys168 with another residue rescues the trafficking of receptor. Thus, in contrast to other P2XRs, all disulfide bonds of P2X7R are individually essential for the proper receptor trafficking.  相似文献   

14.
The P2X4 receptor (P2X4R) is a member of a family of ATP-gated cation channels that are composed of three subunits. Each subunit has two transmembrane (TM) domains linked by a large extracellular loop and intracellularly located N- and C-termini. The receptors are expressed in excitable and non-excitable cells and have been implicated in the modulation of membrane excitability, calcium signaling, neurotransmitter and hormone release, and pain physiology. P2X4Rs activate rapidly and desensitize within the seconds of agonist application, both with the rates dependent on ATP concentrations, and deactivate rapidly and independently of ATP concentration. Disruption of conserved cysteine ectodomain residues affects ATP binding and gating. Several ectodomain residues of P2X4R were identified as critical for ATP binding, including K67, K313, and R295. Ectodomain residues also account for the allosteric regulation of P2X4R; H140 is responsible for copper binding and H286 regulates receptor functions with protons. Ivermectin sensitized receptors, amplified the current amplitude, and slowed receptor deactivation by binding in the TM region. Scanning mutagenesis of TMs revealed the helical topology of both domains, and suggested that receptor function is critically dependent on the conserved Y42 residue. In this brief article, we summarize this study and re-interpret it using a model based on crystallization of the zebrafish P2X4.1 receptor.  相似文献   

15.
The carboxyl tail of G protein-coupled receptors contains motifs that regulate receptor interactions with intracellular partners. Activation of the human neutrophil complement fragment C5a receptor (C5aR) is terminated by phosphorylation of the carboxyl tail followed by receptor internalization. In this study, we demonstrated that bulky hydrophobic residues in the membrane-proximal region of the C5aR carboxyl tail play an important role in proper structure and function of the receptor: Substitution of leucine 319 with alanine (L319A) resulted in receptor retention in the endoplasmic reticulum, whereas a L318A substitution allowed receptor transport to the cell surface, but showed slow internalization upon activation, presumably due to a defect in phosphorylation by both PKC and GRK. Normal agonist-induced activation of ERK1/2 and intracellular calcium release suggested that the L318A mutation did not affect receptor signaling. Binding of GRK2 and PKCbetaII to intracellular loop 3 of C5aR in vitro indicated that mutagenesis of L318 did not affect kinase binding. Limited proteolysis with trypsin revealed a conformational difference between wild type and mutant receptor. Our studies support a model in which the L318/L319 stabilizes an amphipathic helix (Q305-R320) in the membrane-proximal region of C5aR.  相似文献   

16.
The glycine receptor is a member of the Cys-loop, ligand-gated ion channel family and is responsible for inhibition in the CNS. We examined the orientation of amino acids I229 in transmembrane 1 (TM1) and A288 in TM3, which are both critical for alcohol and volatile anesthetic action. We mutated these two amino acids to cysteines either singly or in double mutants and expressed the receptors in Xenopus laevis oocytes. We tested whether disulfide bonds could form between A288C in TM3 paired with M227C, Y228C, I229C, or S231C in TM1. Application of cross-linking (mercuric chloride) or oxidizing (iodine) agents had no significant effect on the glycine response of wild-type receptors or the single mutants. In contrast, the glycine response of the I229C/A288C double mutant was diminished after application of either mercuric chloride or iodine only in the presence of glycine, indicating that channel gating causes I229C and A288C to fluctuate to be within 6 Å apart and form a disulfide bond. Molecular modeling was used to thread the glycine receptor sequence onto a nicotinic acetylcholine receptor template, further demonstrating that I229 and A288 are near-neighbors that can cross-link and providing evidence that these residues contribute to a single binding cavity.  相似文献   

17.
As sensors for structure at the cytoplasmic face of rhodopsin, single-cysteine substitution mutants have been previously studied in the regions connecting helices III and IV and helices V and VI. In this paper we report on single-cysteine substitution mutants at amino acid positions 306-321, comprising the cytoplasmic sequence between helix VII and the palmitoylation sites in rhodopsin. The cysteine opsin mutants were expressed in COS-1 cells and on treatment with 11-cis-retinal all formed the characteristic rhodopsin chromophore. Cysteines at positions 306-316 and 319 reacted in the dark with the thiol-specific reagent 4, 4'-dithiodipyridine (4-PDS) but showed a wide variation in reactivity. Cysteines at positions 317, 318, 320, and 321 showed no reaction with 4-PDS. The mutants on illumination also showed wide variations in activating GT. The mutant Y306C showed almost no GT activation, I307C and N310C were poor, and the activity of the mutants M309C, F313C, and M317C was also reduced relative to WT. The results suggest that the region comprising amino acids 306-321 is a part of a tertiary structure and that specific amino acids in this region on light-activation participate in the interaction with GT.  相似文献   

18.
The mechanism of disease in forms of congenital and limb girdle muscular dystrophy linked to mutations in the gene encoding for Fukutin-related protein (FKRP) has previously been associated with the mis-localisation of FKRP from the Golgi apparatus. In the present report, we have transfected V5-tagged Fukutin-related protein expression constructs into differentiated C2C12 myotubes and the tibialis anterior of normal mice. The transfection of either wild type (WT) or several mutant constructs (P448L, C318Y, L276I) into myotubes consistently showed clear co-localisation with GM130, a Golgi marker. In contrast, whilst WT and the L276I localised to the Golgi of Cos-7 cells, the P448L and C318Y was mis-localised in the majority of these undifferentiated cells. The injection of the same constructs into the tibialis anterior of mice resulted in similar localisation of both the WT and all the mutants. Immunolabelling of FKRP in the muscle of MDC1C and LGMD2I patients was found to be indistinguishable from normal controls. Overall, these data suggest that retention in the endoplasmic reticulum of FKRP is not the main mechanism of disease but that this may instead relate to a disruption of the functional activity of this putative enzyme with its substrate(s) in the Golgi.  相似文献   

19.
Acid-sensing ion channels (ASICs) are thought to trigger some forms of acid-induced pain and taste, and to contribute to stroke-induced neural damage. After activation by low extracellular pH, different ASICs undergo desensitization on time scales from 0.1 to 10 s. Consistent with a substantial conformation change, desensitization slows dramatically when temperature drops (Askwith, C.C., C.J. Benson, M.J. Welsh, and P.M. Snyder. 2001. PNAS. 98:6459-6463). The nature of this conformation change is unknown, but two studies showed that desensitization rate is altered by mutations on or near the first transmembrane domain (TM1) (Coric, T., P. Zhang, N. Todorovic, and C.M. Canessa. 2003. J. Biol. Chem. 278:45240-45247; Pfister, Y., I. Gautschi, A.-N. Takeda, M. van Bemmelen, S. Kellenberger, and L. Schild. 2006. J. Biol. Chem. 281:11787-11791). Here we show evidence of a specific conformation change associated with desensitization. When mutated from glutamate to cysteine, residue 79, which is some 20 amino acids extracellular to TM1, can be altered by cysteine-modifying reagents when the channel is closed, but not when it is desensitized; thus, desensitization appears to conceal the residue from the extracellular medium. D78 and E79 are a pair of adjacent acidic amino acids that are highly conserved in ASICs yet absent from epithelial Na(+) channels, their acid-insensitive relatives. Despite large effects on desensitization by mutations at positions 78 and 79-including a shift to 10-fold lower proton concentration with the E79A mutant-there are not significant effects on activation.  相似文献   

20.
The P2X purinergic receptor channels (P2XRs) differ among themselves with respect to the rates of desensitization during prolonged agonist stimulation. Here we studied the desensitization of recombinant channels by monitoring the changes in intracellular free Ca(2+) concentration in cells stimulated with ATP, the native and common agonist for all P2XRs. The focus in our investigations was on the relevance of the P2XR C terminus in controlling receptor desensitization. When expressed in GT1 cells, the P2XRs desensitized with rates characteristic to each receptor subtype: P2X(1)R = P2X(3)R > P2X(2b)R > P2X(4)R > P2X(2a)R > P2X(7)R. A slow desensitizing pattern of P2X(2a)R was mimicked partially by P2X(3)R and fully by P2X(4)R when the six-amino acid sequences of these channels located in the cytoplasmic C terminus were substituted with the corresponding arginine 371 to proline 376 sequence of P2X(2a)R. Changing the total net charge in the six amino acids of P2X(4)R to a more positive direction also slowed the receptor desensitization. On the other hand, substitution of arginine 371-proline 376 sequence of P2X(2a)R with the corresponding sequences of P2X(1)R, P2X(3)R, and P2X(4)R increased the rate of receptor desensitization. Furthermore, heterologous polymerization of wild-type P2X(2a)R and mutant P2X(3)R having the C-terminal six amino acids of P2X(2a)R at its analogous position resulted in a functional channel whose desensitization was significantly delayed. These results suggest that composition of the C-terminal six-amino acid sequence and its electrostatic force influence the rate of receptor desensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号