首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A gene transfer vector has been developed utilising anionic liposomes as a carrier of plasmid DNA (pEGlacZ, 7.6 kb) to transfect CD3+ T lymphocytes (Jurkat cells). The plasmid DNA that contained the Escherichia coli beta-galactosidase reporter gene was condensed using poly-l-lysine of molecular mass 20,700 (PLK99) to form a polyplex which was interacted with several anionic liposome formulations to form lipopolyplexes. The liposome formulations where based on dioleoylphosphatidylethanolamine (DOPE) in combination with cholesterol and dioleoylphosphatidylcholine (DOPC) and oleic acid, or dimyristoylphosphatidylethanolamine (DMPE). For targeting to the Jurkat cells distearoylphosphatidylethanolamine (DSPE) linked to poly (ethylene glycol) molecular mass 2,000 and coupled to anti-CD3 antibody was incorporated. The polyplexes and lipopolyplexes were characterised in terms of size, zeta potential, agarose gel electrophoresis and electron microscopy and the permeability of the lipopolyplexes to liposome-encapsulated glucose was determined. The polyplexes consisted of a mixed population of rod-like structures (53-160 nm long and 23-31 nm diameter) and spheres (18-30 nm diameter). The lipopolyplexes retained a permeability barrier although were more permeable to glucose than their component liposomes. The poly-l-lysine condensing agent was still susceptible to pronase digestion suggesting that the polyplex was associated with the outer surface of the liposome. The lipopolyplexes with lipid composition DOPE/cholesterol/OA/DSPE-PEG2000 anti-CD3+ PLK99-plasmid DNA had significant gene transfer activity, as monitored by beta-galactosidase expression, that depended on the charge ratio of the component polyplex and the lipid/DNA weight ratio. The anti-CD3 antibody, the liposomal lipid and pH sensitivity were essential for transfection activity.  相似文献   

2.
3.
4.
Guo W  Lee RJ 《Bioscience reports》2000,20(5):419-432
Synthetic gene transfer vectors based on polyplexes complexed to anionic liposomes (LPDII vectors) were characterized for their transfection efficiency in cultured mammalian cells. The effects of polycation to DNA ratio, lipid to DNA ratio, choice of polycation and lipid composition were systematically evaluated in human oral carcinoma KB cells, using a luciferase reporter gene. For LPDII formulations containing poly-L-lysine and dioeoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) anionic liposomes, at a constant lipid to DNA ratio, an increase in the polycation/DNA (N/P) ratio resulted in an increase in transfection activity. Meanwhile, the optimal lipid to DNA ratio for efficient gene delivery was influenced by the N/P ratio used, and was increased at higher N/P ratios. For the DNA condensing agent, poly-L-lysine could be replaced by polyethylenimine (PEI) as the DNA condensing agent in the formulations. For the lipidic components, CHEMS could be replaced by other anioniclipids including oleic acid, dicetylphosphate and phosphatidylserine, but DOPE, a fusogenic helper lipid, could not be replaced by dioleolyphosphatidylcholine. LPDII formulation showed significantly less cytotoxicity compared to the commonly used cationic lipsomes or PEI mediated transfection and several cell lines were transfected with high efficiency. LPDII vectors avoid the use of toxic cationic lipids and may have potential application in gene therapy.  相似文献   

5.
P Harvie  F M Wong    M B Bally 《Biophysical journal》1998,75(2):1040-1051
We have recently described a method for preparing lipid-based DNA particles (LDPs) that form spontaneously when detergent-solubilized cationic lipids are mixed with DNA. LDPs have the potential to be developed as carriers for use in gene therapy. More importantly, the lipid-DNA interactions that give rise to particle formation can be studied to gain a better understanding of factors that govern lipid binding and lipid dissociation. In this study the stability of lipid-DNA interactions was evaluated by measurement of DNA protection (binding of the DNA intercalating dye TO-PRO-1 and sensitivity to DNase I) and membrane destabilization (lipid mixing reactions measured by fluorescence resonance energy transfer techniques) after the addition of anionic liposomes. Lipid-based DNA transfer systems were prepared with pInexCAT v.2.0, a 4.49-kb plasmid expression vector that contains the marker gene for chloramphenicol acetyltransferase (CAT). LDPs were prepared using N-N-dioleoyl-N,N-dimethylammonium chloride (DODAC) and either 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). For comparison, liposome/DNA aggregates (LDAs) were also prepared by using preformed DODAC/DOPE (1:1 mole ratio) and DODAC/DOPC (1:1 mole ratio) liposomes. The addition of anionic liposomes to the lipid-based DNA formulations initiated rapid membrane destabilization as measured by the resonance energy transfer lipid-mixing assay. It is suggested that lipid mixing is a reflection of processes (contact, dehydration, packing defects) that lead to formulation disassembly and DNA release. This destabilization reaction was associated with an increase in DNA sensitivity to DNase I, and anionic membrane-mediated destabilization was not dependent on the incorporation of DOPE. These results are interpreted in terms of factors that regulate the disassembly of lipid-based DNA formulations.  相似文献   

6.
Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

7.
LPDII vectors are synthetic vehicles for gene delivery composed of polycation-condensed DNA complexed with anionic liposomes. In this study, we evaluated the stability and transfection properties of polyethylenimine (PEI, 25 kDa)/DNA polyplexes before and after covalent cross-linking with dithiobis(succinimidylpropionate) (DSP) or dimethyl x 3,3'-dithiobispropionimidate x 2HCl (DTBP), either alone or as a component of LPDII vectors. We found that cross-linking PEI/DNA polyplexes at molar ratios > or =10:1 (DSP or DTBP:PEI) stabilized these complexes against polyanion disruption, and that this effect was reversible by reduction with 20 mM dithioerythritol (DTE). Transfection studies with polyplexes cross-linked at molar ratios of 10:1-100:1 in KB cells, a folate receptor-positive oral carcinoma cell line, showed decreasing luciferase gene expression with increasing cross-linking ratio. Subsequently, polyplexes, cross-linked with DSP at a molar ratio of 10:1, were combined with anionic liposomes composed of diolein/cholesteryl hemisuccinate (CHEMS) (6:4 mol/mol), diolein/CHEMS/poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) (6:4:0.05 mol/mol), or diolein/CHEMS/folate-PEG-cholesterol (folate-PEG-Chol) (6:4:0.05 mol/mol) for LPDII formation. Transfection studies in KB cells showed that LPDII vectors containing cross-linked polyplexes mediated approximately 2-15-fold lower gene expression than LPDII prepared with un-cross-linked polyplexes, depending on the lipid:DNA ratio. Inclusion of PEG-DSPE at 0.5 mol % appeared to further decrease transfection levels approximately 2-5-fold. Compared with LPDII formulated with PEG-DSPE, LPDII incorporating 0.5 mol % folate-PEG-Chol exhibited higher luciferase activities at all lipid:DNA ratios tested, achieving an approximately 10-fold increase at a lipid:DNA ratio of 5. Compared with cross-linked LPDII vectors without PEG-DSPE, inclusion of folate-PEG-Chol increased luciferase activities 3-4-fold between lipid:DNA ratios of 1 and 5. Interestingly, inclusion of 1 mM free folate in the growth media during transfection increased transfection activity approximately 3-4-fold for cross-linked LPDII vectors and LPDII containing folate-PEG-Chol, but had no effect on the transfection activity of LPDII formulated with PEG-DSPE. However, in the presence of 5 mM free folate, the luciferase activity mediated by LPDII vectors containing folate-PEG-Chol was reduced approximately 6-fold. Transmission electron micrographs were also obtained to provide evidence of LPDII complex formation. Results showed that cross-linked LPDII vectors appear as roughly spherical aggregated complexes with a rather broad size distribution ranging between 300 and 800 nm.  相似文献   

8.
We describe the synthesis of a series of AMD3100-lipid and AMD3100-polycationic conjugates which were used as components of targeted lipoplexes (in conjunction with (poly)cationic lipids) and polyplexes, respectively, for mediating specific gene transfer into cells expressing CXCR4 which displays a high affinity for AMD3100. Transfection studies were investigated with suspension CXCR4(+) human lymphoma Jurkat cells and with adherent CXCR4(-) human glioblastoma T98G and human lung carcinoma A549 cells lines in order to demonstrate a receptor-mediated endocytosis pathway and to minimize nonspecific transfection pathways. Altogether, our results show that polyplexes formulated with AMD-labeled polymers constitute, under certain conditions, specific gene transfer systems into suspension CXCR4(+) Jurkat cells. This is more particularly the case when the nonspecific transfection pathways are minimized (i.e. for N/P 相似文献   

9.
Gene delivery mediated by polyplexes such as DNA complexed with polylysine conjugates is limited by the low efficiency of escape of DNA from the endosomes. One of the strategies which favors the transmembrane passage of polyplexes consists of adding anionic amphipathic peptides capable of destabilizing membranes in an acidic medium. Although less efficient than replication-defective adenoviruses, fusogenic peptides increase the expression of the reporter gene by a factor between 100 and 1000 depending on the cell line. However, the activity of a given peptide depends on the composition of the lipid bilayer. We were interested in developing a polyplex (glycoplex) formulation comprising a glycosylated polylysine, a fusogenic peptide and a plasmid which would be useful for efficient transfection (glycofection) of a large panel of cells, even in the presence of serum. We synthesized several peptides and tested their efficiency in combination with different glycoplex formulations. We found that glycofection with a quaternary complex (called one pot formulation) made of lactosylated-polylysine, polylysine, DNA, and the dimeric peptide (E5-WYGG)2-KA was less cell-type dependent than other peptide-based formulations. In addition, its efficiency was not affected by the presence of serum (up to 20%).  相似文献   

10.
Non-viral gene therapy is based on the development of efficient and safe gene carrier systems able to transfer DNA into cells. Polyethylenimine (PEI), the most promising non-viral vector, with its high cationic-charge-density potential is able (1) to compact DNA in complexes (polyplexes) smaller than those formed by liposomes (lipoplexes) and (2) to destabilize the endosomal membrane by a 'proton sponge' effect. Several PEI's hydrophobic modifications were reported in the last several years but in some cases a reduced transfection efficiency was observed. The mechanism underlying this phenomenon is not well understood so far. In order to extensively investigate these mechanisms, we reported a physicochemical and biological study of selected hydrophobic PEI's derivatives grafted with chains of different length and percentages of substitution able to form vesicles (polycationic liposomes) and to bind DNA. Their properties were studied by means of dynamic light scattering, freeze-fracture microscopy, potentiometric titrations, gel retardation assays, polyanion exchange reactions, toxicity assays, in vitro transfections, and fluorescence microscopy. Our results indicate that even if polyplexes are able to pass through the cellular membrane, the stability of PEI's hydrophobic polyplexes likely explain their different transfection efficiency in vitro.  相似文献   

11.
BACKGROUND: Polycation (PC, polyplex), cationic lipid (CL, lipoplex), and a combination of PC/CL (lipopolyplex) formulations were investigated for gene transfer to slow-proliferating human colon carcinoma cell lines (COGA). METHODS: The luciferase reporter gene was complexed with either PC, CL, or PC/CL. PCs included linear (PEI22lin, 22 kDa) and branched polyethylenimine (PEI2k, 2 kDa; PEI25br, 25 kDa) and poly-L-lysine (PLL18 with 18 lysine monomers). CLs included DOCSPER, DOSPER and DOTAP. Lipopolyplexes were formed by either sequentially first mixing DNA with PC or CL, followed by addition of CL or PC, respectively, or simultaneously with both PC and CL. Particle size and zeta-potential were determined and gene transfer and cytotoxicity were quantified on COGA-3, -5, -12, HeLa and Sw480 cells. RESULTS: The highest gene transfer was achieved when DNA was first complexed with PC followed by CL. At low ionic strength, particles were small (50-130 nm) with a zeta-potential of +20-40 mV. At physiological ionic strength, only lipoplexes of DOCSPER or DOSPER and their respective lipopolyplexes with PEI25br were stable to aggregation (140-220 nm). Lipopolyplexes of PEI25br were between 5- to 400-fold more efficient compared to the corresponding lipoplexes or polyplexes in all cases. Chloroquine did not significantly affect lipopolyplex-mediated gene transfer. CONCLUSIONS: Lipopolyplex formulations of PEI25br in combination with multivalent CLs (DOCSPER, DOSPER) are promising tools for in vitro and potentially also in vivo gene transfer to colorectal cancer cells.  相似文献   

12.

Background

HD O is a low molecular weight pseudodendrimer containing oligoethylenimine and degradable hexanediol diacrylate diesters. DNA polyplexes display encouraging gene transfer efficiency in vitro and in vivo but also a limited stability under physiological conditions. This limitation must be overcome for further development into more sophisticated formulations.

Methods

HD O polyplexes were laterally stabilized by crosslinking surface amines via bifunctional crosslinkers, bioreducible dithiobis(succimidyl propionate) (DSP) or the nonreducible analog disuccinimidyl suberate (DSS). Optionally, in a subsequent step, the targeting ligand transferrin (Tf) was attached to DSP‐linked HD O polyplexes via Schiff base formation between HD O amino groups and Tf aldehyde groups, which were introduced into Tf by periodate oxidation of the glycosylation sites.

Results

Crosslinked DNA polyplexes showed an increased stability against exchange reaction by salt or heparin. Disulfide bond containing DSP‐linked polyplexes were susceptible to reducing conditions. These polyplexes displayed the highest gene expression levels in vitro and in vivo (upon intratumoral application in mice), and these were significantly elevated and prolonged over standard or DSS‐stabilized HD O formulations. DSP‐stabilized HD O polyplexes with or without Tf coating were well‐tolerated after intravenous application. High gene expression levels were found in tumor tissue, with negligible gene expression in any other organ.

Conclusions

Lateral stabilization of HD O polyplexes with DSP crosslinker enhanced gene transfer efficacy and was essential for the incorporation of a ligand (Tf) into a stable particle formulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This report describes gene transfer in vitro as well as in vivo using cetylated low-molecular mass (600 Da) polyethylenimine (28% of amine groups substituted with cetyl moieties), termed CT-PEI. This compound is hydrophobic and has to be incorporated into liposomes in order to be suitable for gene transfer studies. Serum-induced plasmid DNA degradation assay demonstrated that CT-PEI-containing liposomal carriers could protect complexed DNA (probably via condensation). In vitro luciferase gene expression achieved using medium supplemented with 10% serum was comparable to that achieved in serum-reduced medium and was highest for CT-PEI/cholesterol liposomes, followed by CT-PEI/dioleoylphosphatidylcholine liposomes and PEI 600 Da (uncetylated) carrier. In vivo systemic transfer into mice was most efficient when liposome formulations contained CT-PEI and cholesterol. Higher luciferase expression was then observed in lungs than in liver. In conclusion: liposomes containing cetylated polyethylenimine and cholesterol are a suitable vehicle for investigating systemic plasmid DNA transfer into lungs.  相似文献   

14.
Polyethylenimine (PEI) is a potential gene transfer agent, but is limited by its poor transfection efficiency in vivo due to poor solubility and stability, pronounced toxicity and non-specific interaction with target cells. To improve its pulmonary gene transfection property, galactose (whose binding lectins are abundantly expressed in the lung) was selected as a ligand to improve the binding and uptake of the modified PEI/pDNA (plasmid DNA) polyplexes into lung cells. A novel protocol was developed to synthesize galactose-polyethylenglycol (PEG)-PEI copolymers. The resulting galactose-PEG-PEI/pDNA polyplexes showed improved solubility, stability, and reduced toxicity. Compared with that obtained by PEI/pDNA at a N/P ratio of 6, the transfection efficiency of 1% galactose-PEG-PEI/pDNA polyplexes at the N/P ratio of 36 was 4.5- and 11.6-fold in the A549 cell line and in mice lung, respectively. These data taken suggest that galactose-PEG-PEI may be a promising pulmonary gene delivery system.  相似文献   

15.
Transfection efficiency of liposomal gene delivery vectors depends on an optimal balance in the electro-chemical and structural properties of the transfection-capable complexes. We have recently reported a novel anionic lipoplex DNA delivery system composed of a ternary complex of endogenous occurring non-toxic anionic lipids, physiological Ca2+ cations, and plasmid DNA encoding a gene of interest with high transfection efficiency and low toxicity. In this work, we investigate the electro-chemical and structural properties anionic lipoplexes and compare them with those of Ca2+-DNA complexes. Biophysical characterization is used to explain the transfection efficiency of anionic lipoplexes in mammalian CHO-K1 cells. Circular dichroism and fluorescence spectroscopy showed that the plasmid DNA underwent conformational transition from native B-DNA to Z-DNA due to compaction and condensation upon Ca2+-mediated complexation with anionic liposomes. Zeta potential measurements and gel electrophoresis studies demonstrated that Ca2+ interaction with plasmid DNA during the formation of lipoplexes also led to increased association of supercoiled plasmid DNA with the lipoplexes, leading to charge neutralization which is expected to facilitate transfection. However, even 10-fold higher concentrations of Ca2+ alone (in the absence of the anionic liposomes) were unable to induce these changes in plasmid DNA molecules. A model explaining the possible mechanism of anionic lipoplex formation and the correlation of high transfection efficiency to biophysical properties was proposed. These studies confirm the utility of biophysical studies to identify optimal formulation conditions to design efficient liposomal gene delivery vectors.  相似文献   

16.
This study aimed to investigate the feasibility of using a cationic nonviral gene carrier in endothelial cells for enhancing gene expression by the addition of an integrin-binding RGD peptide. A 4-branched cationic polymer of poly( N,N-dimethylaminopropylacrylamide) (star vector), developed as a gene carrier, could complex with the luciferase-encoding plasmid DNA under a charge ratio of 5 (vector/pDNA) to form polymer/DNA complexes (polyplexes). The addition of the RGD-containing peptide (GRGDNP) to the polyplex solution led to a decrease in the zeta-potential from ca. +30 to +20 mV along with the reduction in the particle size from ca. 300 to 200 nm. Additionally, a marked inhibition of polyplex aggregation was observed, indicating the coating of the polyplex surface with RGD peptides. A transfection study on endothelial cells showed that the luciferase activity increased with the amount of RGD peptides added to the polyplexes and exhibited minimal cellular cytotoxicity. The transfection activity further increased when cyclic RGD peptides (RGDFV) were used; the activity with RGD peptide addition was approximately 8-fold compared to that without RGD peptide addition. Gene delivery to endothelial cells was significantly enhanced by only the addition of RGD peptides to star vector-based polyplexes.  相似文献   

17.
Linear cationic beta-cyclodextrin (beta-CD)-based polymers can form polyplexes with plasmid DNA and transfect cultured cells. The effectiveness of the gene delivery and the cellular toxicity has been related to structural features in these polycations. Previous beta-CD polycations were prepared from the cocondensation of 6(A),6(D)-dideoxy-6(A),6(D)-diamino-beta-CD monomers with other difunctionalized monomers such as dimethyl suberimidate (DMS). Here, the type of CD and its functionalization are varied by synthesizing numerous 3(A),3(B)-dideoxy-3(A),3(B)-diamino-beta- and gamma-CD monomers. Both alkyl- and alkoxydiamines are prepared in order to vary the nature of the spacing between the CD and the primary amines in the monomers. These diamino-CD-monomers are polymerized with DMS to yield amidine-based polycations. The nature of the spacer between the CD-ring and the primary amines of each monomer is found to influence both molecular weight and polydispersity of the polycations. When these polycations are used to form polyplexes with plasmid DNA, longer alkyl regions between the CD and the charge centers in the polycation backbone increase transfection efficiency and toxicity in BHK-21 cells, while increasing hydrophilicity of the spacer (alkoxy versus alkyl) provides for lower toxicity. Further, gamma-CD-based polycations are shown to be less toxic than otherwise identical beta-CD-based polycations.  相似文献   

18.
19.
One-component homopolymers of cationic monomers (polycations) and diblock copolymers comprising poly(ethylene glycol) (PEG) and a polycation block have been the most widely used types of polymers for the formulation of polymer-based gene delivery systems. In this study, we incorporate a hydrophobic middle block into the conventional PEG-polycation architecture and investigate the effects of this hydrophobic modification on the physicochemical and cell-level biological properties of the polymer-DNA complexes that are relevant to gene delivery applications. The ABC-type triblock copolymer used in this study consists of (A) PEG, (B) hydrophobic poly( n-butyl acrylate) (PnBA), and (C) cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) component polymers. The properties of the triblock copolymer/DNA complexes are compared with those of two other more conventional DNA carriers derived, respectively, using a PDMAEMA homopolymer and a PEG-PDMAEMA diblock copolymer that had comparable molecular weights for individual blocks. In aqueous solution, the PEG-PnBA-PDMAEMA polymer forms positively charged spherical micelles. The electrostatic complexation of these micelles with plasmid DNA molecules results in the formation of stable small-sized DNA particles that are coated with a micelle monolayer, as confirmed by agarose gel electrophoresis, dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). Proton nuclear magnetic resonance ( (1)H NMR) spectroscopy measurements indicate that the whole micelle-DNA assembly (named "micelleplex" for convenience) is shielded predominantly by the PEG chains. DLS and optical microscopy imaging measurements indicate that compared with PDMAEMA-DNA polyplexes, the micelleplexes have a significantly lower tendency to aggregate under physiological salt concentrations and show reduced interactions with negatively charged components in serum such as albumin and erythrocytes. While the micelleplexes are comparable to the PEG-PDMAEMA-based DNA polyplexes in terms of their stability against aggregation under high salt concentrations and in the presence of the albumin protein, they have a slightly higher tendency to interact with erythrocytes than the diblock copolymer polyplexes. Agarose gel electrophoresis measurements indicate that relative to the PEG-PDMAEMA polyplexes, the micelleplexes provide better protection of the encapsulated DNA from enzymatic degradation and also exhibit greater stability against disintegration induced by polyanionic additives; in these respects, the PDMAEMA homopolymer-based polyplexes show the best performance. In vitro studies in HeLa cells indicate that the PDMAEMA polyplexes show the highest gene transfection efficiency among the three different gene delivery systems. Between the micelleplexes and the PEG-PDMAEMA polyplexes, a higher gene transfection efficiency is observed with the latter system. All three formulations show comparable levels of cytotoxicity in HeLa cells.  相似文献   

20.
BACKGROUND: Linear polyethylenimine (LPEI) with a molecular weight (MW) of 22 kDa has been described as having a superior ability to induce gene transfer compared to its branched form. However, the transfection efficiency of the polymer cannot be enhanced beyond a certain limit due to cytotoxicity. We explored the potential of utilizing LPEIs with MWs ranging from 1.0 to 9.5 kDa to overcome this limitation. METHODS: Polyplexes of plasmid DNA encoding for the enhanced green fluorescent protein (EGFP) and various LPEIs were compared concerning their transfection efficiency and cytotoxicity in CHO-K1 and HeLa cells by flow cytometry. The involvement of endolysosomes in LPEI-mediated gene transfer was investigated by applying the proton pump inhibitor bafilomycin A1 and the lysosomotropic agent sucrose. Confocal laser scanning microscopy was applied to assess the size and shape of polyplexes under cell culture conditions, to detect their endolysosomal localization and to observe their translocation to the nucleus. RESULTS: The transfection efficiency could be altered by varying the MW and the amount of the polymer available for polyplex formation. The highest transfection efficiency (about 44%), i.e. the fraction of EGFP-positive cells, was obtained with LPEI 5.6 kDa, while the cytotoxicity remained low. The colocalization of polyplexes and endolysosomes was observed, and it appeared that the larger polyplexes escaped from the acidic organelles particularly quickly. For LPEI 5.0 and 9.0 kDa, the number of cells and nuclei that had taken up DNA after 6 hours was similar, as determined by flow cytometry. CONCLUSIONS: Our study suggests that LPEIs with low MWs are promising candidates for non-viral gene delivery, because they are more efficient and substantially less toxic than their higher MW counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号