首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions.  相似文献   

2.
The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae.  相似文献   

3.
Growth of and the capacity to take up nitrogen in the freshwater microalgae Chlorella vulgaris were studied while varying the concentrations of ammonium and nitrate, the pH and the source of carbon in a synthetic wastewater growth medium when co-immobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Analyses of 29 independent experiments showed that co-immobilization of the microalgae with A. brasilense could result in two independent phenomena directly affected by cultivation factors, such as nitrogen species, pH and presence of a carbon source. First, growth of the microalgal population increased without an increase in the capacity of the single cells to take up nitrogen, or second, the capacity of cells to take up nitrogen increased without an increase of the total microalgal population. These phenomena were dependent on the population density of the microalgae, which was in turn affected by cultivation factors. This supports the conclusion that the size of the microalgal population controls the uptake of nitrogen in C. vulgaris cells - the higher the population (regardless the experimental parameters), the less nitrogen each cell takes up.  相似文献   

4.
Cha TS  Chen JW  Goh EG  Aziz A  Loh SH 《Bioresource technology》2011,102(22):10633-10640
This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions.  相似文献   

5.
Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments.  相似文献   

6.
In an agroindustrial wastewater pond, a naturally occurring unicellular microalga, Chlorella vulgaris, was closely associated with the terrestrial plant-associative N2-fixing bacterium Phyllobacterium myrsinacearum. When the two microorganisms were artificially coimmobilized in alginate beads, they shared the same internal bead cavities, and the production of five microalgal pigments increased, but there were no effects on the number of the cells or the biomass of the microalga. The association, however, reduces the ability of C. vulgaris to remove ammonium ions and phosphorus from water. The bacterium produced nitrate from ammonium in synthetic wastewater with or without the presence of the microalga, and fixed nitrogen in two culture media. Our results suggest that interactions between microalgae and associative bacteria should be considered when cultivating microalgae for wastewater treatment.  相似文献   

7.
The chlorellavorous bacterium . "Vampirovibrio chlorellavorus" Gromov et Mamkaeva, grows only by killing and consuming the cell contents of species of the green alga Chlorella Beijerinck. Of the 76 algal strains examined in this study, the bacterium attacks all 31 strains of the species C. vulgaris. C. sorokiniana, and C. kessleri, but attacks only two of 39 strains of nine other Chlorella species. Neither of two Prototheca strains was susceptible to attack. This narrow host specificity may be related to cell surface properties .  相似文献   

8.
An examination of the sterols of UTEX 2341, a small (ca. 2μm), nonmotile unicellular marine alga identified as Chlorella minutissima Fott et Novakova, yielded results inconsistent with any of 35 Chlorella strains analyzed previously. UTEX 2341 contained cholesterol as the principal sterol, with 24-methylenecholesterol, fucosterol, and isofucosterol also present; these are not dominant sterols in any other Chlorella species. Presence of eicosapentaenoic acid in UTEX 2341 also contrasted with fatty acids of Chlorella strains analyzed previously. Pigment analysis of UTEX 2341 revealed that it contained chlorophyll a, but not chlorophylls b or c; violaxanthin was the only major xanthophyll pigment. Both lipid and pigment compositions suggest that UTEX 2341 is not a member of the genus Chlorella but, rather, belongs in the Eustigmatophyceae; it may be Nannochloropsis sp. Cells with possible extracellular structures were present at an appreciable percentage of the stationary-phase population studied; centrifuging removed or collapsed these structures. The high cholesterol and polyunsaturated fatty acid contents of UTEX 2341 make it attractive as a potential aquaculturefeed, provided it is, or can be made, digestible.  相似文献   

9.
The effect of the carbon to nitrogen (C/N) ratio of the medium and the aeration rate on the lipid content and fatty acid composition ofChlorella sorokiniana was investigated using heterotrophic, batch culture. Both parameters had a significant effect. A C/N ratio of approximately 20, was found to indicate a change from carbon to nitrogen limitation forC. sorokiniana. Cell lipid content was at a minimum at this value and increased at both higher and lower C/N values. Low C/N ratios favoured a high proportion of trienoic fatty acids at the expense of monoenoic acids. Aeration enhanced cell growth, fatty acid yield and the synthesis of unsaturated dienoic and trienoic fatty acids, but reduced cell lipid content. The results demonstrate that the fatty acid composition and lipid content of heterotrophically-grown microalgae can be favourably manipulated by varying culture conditions.  相似文献   

10.
Inoculum size strongly affects cell growth and lipid accumulation of microalgae, one of the most potential biodiesel feedstock, however, the metabolic mechanism(s) of the lipid biosynthesis upon inoculum size has not been fully explored yet. The effects of inoculum size on cell growth, lipid accumulation, and metabolic changes of a green microalga Chlorella sorokiniana were investigated. In our experimental range of inoculum size, the productivity and the cetane number (CN) of fatty acid methyl esters (FAME) increased with increasing initial cell density, and the inoculum of 1 × 10(7) cells mL(-1) processed much higher productivity (up to 2.02-fold) and CN (up to 1.19-fold) of the FAME than the others. A significant correlation between the metabolic profile and quantity and quality of lipid production was revealed by partial least-squares to latent structures (PLS) analysis, and 15 key metabolites were identified. Most of those metabolites were involved in the photosynthetically fixed carbon metabolism. Furthermore, light intensity as one of the vital limitation factors for the high inoculum size cultivation was evaluated by illumination assay and the results revealed that increasing light intensity could improve the polyunsaturated fatty acids composition and lipid accumulation of C. sorokiniana. The lipid productivity of the culture was improved by 71.21% with the light intensity of 110 μmol m(-2) s(-1), compared to that under the irradiance of 65 μmol m(-2) s(-1).  相似文献   

11.
研究了4种培养基及组成对蛋白核小球藻F-9和普通小球藻HYS-2的生长、油脂积累和脂肪酸组成的影响。结果发现knop、Provasoli、f/2、MAV 4种培养基中,f/2培养基更有利于小球藻的快速生长,而MAV培养基更适合油脂积累。在f/2培养基中F-9和HYS-2相对生长速率分别为0.156和0.171,培养9 d细胞干重为0.188 g/L和0.195 g/L。而在MAV培养基中F-9油脂含量最高可达19.67%,HYS-2油脂含量最高为21.91%,脂肪酸最高分别占干重的5.11%和8.71%。N/P为16∶1时小球藻生长最快,培养9 d后F-9和HYS-2的相对生长速率分别为0.23和0.239,最终细胞干重分别为0.107 g/L和0.143 g/L。而F-9和HYS-2在N/P为1∶1条件下积累油脂和脂肪酸含量最高,总脂含量分别占干重的为20.40%和27.39%,总脂肪酸占藻粉干重的含量为12.52%和16.94%。  相似文献   

12.
Effect of iron on growth and lipid accumulation in Chlorella vulgaris   总被引:12,自引:0,他引:12  
Liu ZY  Wang GC  Zhou BC 《Bioresource technology》2008,99(11):4717-4722
The economic feasibility of algal mass culture for biodiesel production is enhanced by the increase in biomass productivity and storage lipids. Effect of iron on growth and lipid accumulation in marine microalgae Chlorella vulgaris were investigated. In experiment I, supplementing the growth media with chelated FeCl3 in the late growth phase increased the final cell density but did not induce lipid accumulation in cells. In experiment II, cells in the late-exponential growth phase were collected by centrifugation and re-inoculated into new media supplemented with five levels of Fe3+ concentration. Total lipid content in cultures supplemented with 1.2 x 10(-5) mol L(-1) FeCl3 was up to 56.6% biomass by dry weight and was 3-7-fold that in other media supplemented with lower iron concentration. Moreover, a simple and rapid method determining the lipid accumulation in C. vulgaris with spectrofluorimetry was developed.  相似文献   

13.
Li Z  Yuan H  Yang J  Li B 《Bioresource technology》2011,102(19):9128-9134
High production cost is a major obstacle to the extensive use of microalgae biodiesel. To cut the cost and achieve higher biomass productivity, Chlorella minutissima UTEX2341 was cultured under photoheterotrophic conditions. With the carbon, nitrogen and phosphorus concentration of 26.37, 2.61 and 0.03 g L?1 d?1 respectively, a maximum biomass productivity of 1.78 g L?1 d?1 was obtained, which was 59 times more than that cultured under autotrophic condition. The lipid productivity reached 0.29 g L?1 d?1, which was 11.9 times higher than the highest value reported by Oh et al. (2010). The conversion rate of microalgae lipids to FAME was found to be elevated from 45.65% to 62.97% and the FAME productivity increased from 1.16 to 180.68 mg L?1 d?1 after the optimization. 94% of the fatty acid of C. minutissima UTEX2341 was found to be composed of palmitic, oleic, linoleic and γ linoleic and the unsaturated fatty acids were the main parts (79.42%).  相似文献   

14.
Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments.  相似文献   

15.
The neutral lipid profiles of nine species of thin trilaminar outer wall (TLS)-containing freshwater and marine microalgae from the class of Chlorophyceae were studied with emphasis on the relationship between the lipid content and the occurrence of insoluble non-hydrolysable biopolymer (i.e. algaenan). All the freshwater microalgae produce a highly aliphatic algaenan. In sharp contrast, no algaenan was isolated from the two marine microalgae, Chlorella marina and Chlorella minutissima marina, supporting the absence of a close relationship between the presence of TLS and the occurrence of algaenan. High molecular weight straight-chain hydrocarbons (C23-C29) were identified in most of the algaenan-producing microalgae and in the algaenan-devoid C. minutissima marina, whereas only low molecular weight hydrocarbons were detected in algaenan-producing Scenedesmus subspicatus and in algaenan-devoid C. marina. Sterols, phytol and fatty alcohols were the major constituents of the polar fraction of the neutral lipids of all the microalgae investigated. High molecular weight saturated or mono-unsaturated alcohols were detected in C. emersonii and in all the microalgae belonging to the genus Scenedesmus. High amounts of saturated C30 and C32 alpha,omega-diols were also detected in S. subspicatus, S. armatus and S. pannonicus. Three classes of lipids were encountered in very small amounts in the medium polarity fraction of the neutral lipids of the microalgae investigated: (i) Monoesters composed predominantly of saturated C16 or C18 fatty acids and saturated C8, C16 or C18 alcohols and (ii) long-chain methyl ketones from C25 to C31 were detected in several species and (iii) methyl esters of fatty acids ranging from C16 to C28 were identified in all the microalgae. Attempts to use the neutral lipid composition and particularly the unusual long-chain lipids, as specific indicators of the occurrence of algaenan in TLS-containing microalgae were unsuccessful.  相似文献   

16.
While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold''s basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L−1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18∶1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18∶2 relative to 18∶1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L−1 d−1 to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L−1 d−1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis.  相似文献   

17.
18.
高产油小球藻的筛选及其油脂分析   总被引:3,自引:0,他引:3  
小球藻广泛分布于各种生境,特别是淡水环境中,适应性强。其同化产物主要是淀粉,但在环境胁迫条件下可显著积累中性脂,其脂肪酸类型主要为C16和C18,适合作为生物柴油的原料。我们从中国部分地区水体中分离纯化到若干株小球藻,通过薄层层析比较分析了21株产油小球藻的油脂含量,筛选到一株三酰基甘油含量较高的藻株Chlorella sp.NMX37N。其适宜生长温区为15—35℃,在25℃时生长速率最快,比生长速率为0.53/d,生长的最适光强为250μmol photons/(m2.s)。批量培养实验显示,藻细胞的三酰基甘油含量随培养时间延长而增加,并在培养的稳定期达到最大值,此时培养液中氮基本被耗尽。在批量培养条件下培养Chlorella sp.NMX37N约40d,藻细胞中总脂含量可达到33%左右,与此相比通过两步培养方式,将培养至对数后期(约20d)的藻细胞缺氮处理48h后,得到的总脂产率相当。通过两步培养方式可以大大缩短培养时间,使得该藻细胞快速有效积累油脂。另外,气相色谱分析显示,该藻的总脂和三酰基甘油的脂肪酸均以C16∶0和C18∶2为主,占总脂肪酸的70%以上,且不含C20以上的长链脂肪酸,可以作为优质的生物柴油原料。  相似文献   

19.
利用响应面法优化了混合营养培养普通小球藻生产生物质的培养基组成.首先采用Plackett-Burman设计对11个相关营养因素的效应进行了评价,并筛选出影响小球藻细胞生长的3个主要因素为KNO3、葡萄糖和NaC1;然后结合Box-Behnken设计建立了以小球藻浓度为响应值的二次回归方程模型,获得优化的培养基组成为KNO31.64g/L、葡萄糖45g/L、NaC1 1.57g/L;模型预测的最大浓度为5.28g/L,验证值为5.68g/L;验证结果表明,所建立模型预测精度较好,可用于优化小球藻的混养培养基组成.优化条件下混养小球藻细胞的蛋白质和色素含量较优化前降低,而可溶性糖和油脂含量提高,脂肪酸以棕榈酸和油酸为主;细胞组分分析结果显示,混养培养所得小球藻生物质具有作为生产微藻生物能源原料的潜力.  相似文献   

20.
High lipid content in microalgae is an essential parameter for adopting of microalgal biomass as a feedstock for biodiesel. Mutation is one approach to obtain desired algal strain with high lipid production. In this study, a mutant strain of Chlorella pyrenoidosa was isolated using 1.5?×?1015 ions cm?2 s?1 of N+ ion beam implantation technique, which has been widely used in mutagenesis of agricultural crops. N+ implantation slightly improved the growth of the mutant over the corresponding wild strain with significant increase in lipid content (32.4 % higher than the wild strain), which resulted in significant increase in lipid productivity by 35 %. In addition, ion implantation mutagenesis of C. pyrenoidosa resulted in 21.4 % decrease in total saturated fatty acids (SFAs) compared to the wild type, with a noticeable increase in polyunsaturated fatty acids (PUFAs). The increase in PUFAs was due mainly to stimulation of hexadecadienoic acid (C16:2) and octadecadienoic acid (C18:2) production. However, the SFA content of wild and mutant strains was 31.7 and 24.9 % of total fatty acids, respectively, highlighting the oxidative stability of biodiesel produced by both strains according to the European standards. Cultivation of C. pyrenoidosa mutant in selenite enrichment medium for five successive cultivation experiments showed insignificant changes in biomass productivity, lipid content, and lipid productivity alongside the study period, which confirms the genetic stability of the produced mutant. The present study confirmed the feasibility of generation of microalgae mutants with significant high lipid production using ion beam implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号