首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 157 毫秒
1.
癌症作为一种威胁人类健康的疾病,其病因极其复杂,人类至今尚无法完全治愈。在肿瘤治疗方法的探索中,研究者发现某些细菌可以有效靶向肿瘤细胞并抑制其生长。相比于传统的肿瘤治疗方法,细菌具备特异性定植于肿瘤微环境的能力,极大地避免了癌症治疗中对于正常组织的伤害,提高了治疗的靶向性和安全性。另一方面,合成生物学工具的发展使研究人员可依据肿瘤特征对细菌的性状进行“设计”,进而提高细菌的靶向能力和肿瘤杀伤能力以及细菌治疗的安全性。近年来,针对人益生菌E. coli Nissle 1917进行细菌靶向治疗肿瘤的研究越来越多。通过合成生物学理念在E. coli Nissle 1917中添加基因电路,使其具备更强的感应与靶向和杀伤肿瘤的能力,更加“智能化”地应用于癌症的治疗中。本文主要综述利用细菌治疗癌症的发展,介绍利用合成生物学改造E. coli Nissle 1917的方法,探讨基因改造活细菌的靶向性、高效性与安全性,并展望以合成生物学为指导的细菌治疗癌症的未来发展方向。  相似文献   

2.
厌氧和兼性厌氧细菌能够专一性地优先累积在肿瘤的低氧量和坏死的区域,这使其具有很好的靶向性。它们能够分泌毒素或水解酶以及引起针对肿瘤的免疫反应,具有溶瘤作用。基因工程技术能够改造这些细菌使其具有抗肿瘤的特性,进一步增加治疗效果。最新的研究发现,这些细菌的某些代谢产物也具有增强肿瘤治疗效果的作用,为肿瘤的治疗提供了新的思路。本文对细菌作为抗肿瘤剂的相关研究进行综述。  相似文献   

3.
利用细菌作为一种癌症治疗手段已有较长的历史。随着对肿瘤微环境和免疫机制等相关问题的不断探究,细菌疗法已逐渐发展成为一种平台技术,为肿瘤的免疫治疗开辟了新策略、新潜能。某些细菌依靠其自身特性,能够特异性靶向肿瘤组织,不仅对肿瘤生长产生直接抑制作用,还能刺激机体产生固有和适应性免疫应答,从而显著提升抗肿瘤治疗的疗效,甚至有助于解决转移性肿瘤等难题。通过基因工程技术,从基因水平上调控细菌的分子机制来定制其生物功能,高效递送各种免疫治疗剂至肿瘤病灶处而发挥作用,达到精确调控、有效激活的目的,这是其他药物传递系统所无法比拟的。此外,肿瘤靶向型细菌介导的治疗方案既可作为单一疗法应用,也可与其他治疗方式如化疗、放疗和光热治疗等联合,以获得更佳的临床治疗结果。因此,该文主要讨论了活细菌发挥肿瘤靶向性和抗肿瘤免疫作用的关键,总结了生物工程菌用于免疫治疗的相关研究及其与其他治疗方式联合应用的优势,为细菌疗法的进一步研究与发展提供依据。  相似文献   

4.
李轶杰  刘欢欢  张富春 《生物技术》2015,(2):176-179,190
[目的]探讨携带自杀基因单纯疱疹病毒胸苷激酶(HSV-tk)的重组乳球菌静脉注射后靶向实体肿瘤组织定殖及联合更昔洛韦(GCV)治疗小鼠黑色素瘤的可能性。[方法]荷瘤小鼠静脉注射乳球菌3d或7d后,将小鼠脾肺肝肾器官和肿瘤组织细胞匀浆后涂布于筛选培养基上,以乳酸菌数量的评价静脉发送乳球菌靶向定殖肿瘤细胞的可能性。以携带HSVtk的重组乳酸乳球菌经静脉途径处理荷瘤小鼠后,通过观测小鼠肿瘤体积变化及小鼠存活率评价相关抗肿瘤效果。[结果]静脉注射乳酸乳球菌3d后在小鼠脾肺肝肾和肿瘤组织内均有乳球菌检出,而7d后仅在肿瘤组织中发现有乳酸乳球菌的分布。与对照相比,静脉注射LL-HSV-tk联合GCV处理能显著抑制小鼠体内肿瘤的生长。[结论]静脉发送携带治疗性分子的乳酸乳球菌能靶向实体肿瘤组织定殖并抑制肿瘤的生长。  相似文献   

5.
冉茜  胡昌华 《生命科学》2009,(3):452-455
减毒鼠伤寒沙门菌由于具有肿瘤靶向性,能在肿瘤组织中复制并产生抗肿瘤效果的能力,使肿瘤治疗获得了新契机。减毒鼠伤寒沙门菌作为细菌载体使目的基因在肿瘤组织内特异表达,表现出良好治疗效果。近期研究发现,单独使用突变后的菌株A1-R在裸鼠模型上治疗乳腺癌和前列腺癌分别可达到40%和50%的治愈率;在小鼠肿瘤转移模型中也展现出良好的治疗效果。鼠伤寒沙门菌作为肿瘤治疗制剂有诱人的前景。本文就这些研究的最新进展做一综述。  相似文献   

6.
“肿瘤发生的干细胞学说”认为肿瘤起源于干细胞,肿瘤生长是肿瘤组织中极少量肿瘤干细胞增殖的结果。实体肿瘤干细胞分离成功的报道最早见于乳腺癌的研究,随后,脑肿瘤及其他实体肿瘤干细胞也被分离。对肿瘤干细胞的深入研究,将为有效地根治肿瘤开辟新的思路。该文介绍肿瘤干细胞的发现、起源及其在人乳腺癌、脑部肿瘤和实体肿瘤中的研究进展,展望实体肿瘤干细胞的研究前景。  相似文献   

7.
肿瘤是21世纪威胁人类健康的主要疾患之一。临床上,实体瘤治疗仍以手术切除、放化疗和靶向治疗为主,但这些方法往往不能根除肿瘤病灶,易导致肿瘤复发和进展。肿瘤免疫治疗是利用人体的免疫系统,通过增强或恢复抗肿瘤免疫力实现控制和杀伤肿瘤的一种新的治疗模式。肿瘤免疫治疗能够在众多患者中产生持久反应,过继性免疫治疗和免疫检查点阻断剂治疗均可产生显著的抗原特异性免疫反应。肿瘤浸润淋巴细胞(TILs)是一种存在于肿瘤组织内部具有高度异质性的淋巴细胞,在宿主抗原特异性肿瘤免疫应答中发挥关键作用。最新研究表明,在肿瘤发生和治疗过程中,TILs的亚群组成和数量与患者预后密切相关;抗肿瘤的TILs介导的过继性免疫治疗方法已在多种实体瘤中取得了良好的疗效。文中就实体肿瘤中TILs的研究进展作一综述。  相似文献   

8.
细菌载体是当前纳米载药系统研究的热点,其具有粒径小、靶向性能强、可装载化学药物和核酸药物的能力并且易于制备的特点。以活菌作为载体,容易引起生物体免疫反应,存在潜在的安全问题。通过基因工程技术和生物工程技术,可以获得低免疫原性和低毒性的细菌衍生物,并使其具有一定的靶向功能,能够用作载体来递送具有治疗作用的药物至肿瘤靶组织或靶细胞,这引起研究者的广泛关注。本文中,笔者选择3种常见的细菌衍生物——细菌外膜囊泡、细菌原生质体和微细胞这3种细菌衍生物载体在肿瘤治疗中的研究进展进行综述,以期为肿瘤治疗中药物递送系统的构建提供借鉴。  相似文献   

9.
早于放疗、化疗等经典肿瘤疗法,细菌疗法的临床应用在1868年就已被报道。虽然细菌拥有天然的肿瘤靶向能力、侵袭能力和细胞毒性,种类繁多且可塑性强,然而,由于其作用机理不清、可控性弱、安全性差等诸多问题,限制了它作为肿瘤治疗药物的开发和应用。近年来,合成生物学的兴起为肿瘤细菌疗法赋予了新的希望,让它重新回到了人们的视野。合成基因线路的研究(如自杀开关、群体感应线路、振荡器和记忆线路等)有助于实现细菌结构重塑、毒性降低、靶向性增强、表型时空可控等特性,从而提高人们对细菌疗法的操控能力。该文概述细菌疗法的发展历程,介绍合成细菌诊疗肿瘤的重要成果,探讨如何利用合成生物学手段重编程细菌,深度优化肿瘤细菌疗法。  相似文献   

10.
肿瘤基因治疗的靶向策略   总被引:10,自引:2,他引:8  
对肿瘤组织的靶向性可以提高基因治疗的效果 ,避免对正常组织的损伤 ,并且能降低作为载体的微生物对机体的危害。对于瘤内注射的给药方法 ,靶向性似乎显得不是特别重要 ,但是如果要系统给药 ,靶向性是很关键的一个问题。靶向基因治疗肿瘤可以通过靶向基因导入和靶向基因表达来实现。近年来 ,在靶向基因导入方面的研究有很多进展 ,例如 ,用双亲性的桥连分子协助腺病毒和逆转录病毒靶向转导 ;在各种病毒载体的衣壳蛋白中插入靶向性的小肽或较大的多肽靶向结构域 ;增殖病毒作为一种很有前途的抗肿瘤制剂可有效地靶向杀伤肿瘤细胞。受体介导的DNA或DNA 脂质体复合物的靶向系统和其他一些靶向性的有疗效的载体 ,如细菌 ,也处于研究中。其中的一些载体已经进入临床实验。为了实现基因的靶向可调控表达 ,组织或肿瘤特异性的启动子和人工合成的可调控表达系统被用来调控治疗基因的表达。反义核酸、核酶以及脱氧核酶 (DNAzyme)被用来靶向抑制与肿瘤发生密切相关基因的表达。  相似文献   

11.
One of the primary limitations of cancer therapy is lack of selectivity of therapeutic agents to tumor cells. Current efforts are focused on discovering and developing anticancer agents that selectively target only tumor cells and spare normal cells to improve the therapeutic index. The use of preferentially replicating bacteria as an oncolytic agent is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. Meanwhile, bacteria have been demonstrated to colonize and destroy tumor, and have emerged as biological gene vectors to tumor microenvironment. To improve the efficacy and safety of the bacterial therapy, a further understanding of bacteria between with immune system is required. Furthermore, we want to evaluate how bacterial infection facilitates the “bystander effect” of chemotherapeutic agent and assess if it can be used for additional antitumor effect when combined with chemotherapy. This study may not only evaluate therapeutic efficacy of bacteria for the treatment of cancer but also elucidate the mechanisms underlying antitumor activities mediated by bacteria, which involve host immune responses and the cellular molecular responses.  相似文献   

12.
Tumor microenvironment is known to play important roles in tumor progression. Many therapies, targeting the tumor microenvironment, are designed and applied in the clinic. One of these approaches is in situ antitumor therapy. This way, bacteria, antibodies, plasmid DNA, viruses, and cells are intratumorally delivered into the tumor site as “in-situ antitumor vaccine,” which seeks to enhance immunogenicity and generate systemic T cell responses. In addition, this intratumoral therapy can alter the tumor microenvironment from immunosuppressive to immunostimulatory while limiting the risk of systemic exposure and associated toxicity. Contemporarily, promising preclinical results and some initial success in clinical trials have been obtained after intratumoral therapy.  相似文献   

13.
免疫毒素 (immunotoxins)是由某些细菌和植物产生的毒素蛋白与抗体或生长因子等靶向分子连接而成 ,用于杀伤表面带有特定抗原或受体的细胞。在试验中 ,免疫毒素在肿瘤周围环境中的稳定性是影响其抗肿瘤效果的主要因素之一。本文主要对几种由不同形式的抗体Fv段构建的免疫毒素的稳定性进行了比较 ,并对定点突变和PEG化学修饰提高免疫毒素稳定性的方法做一简要介绍。  相似文献   

14.
In the complexity of host tumor relations, the regeneration of the tissue in which the tumor is growing, or in some other tissue in the organism, could influence the maturation of tumor cells, i.e. tumor reversion. Clinical observations and experiments on plants, lower animals, or animal embryos, performed by several authors, and our results on the influence of regenerating mouse liver on the abilities of tumor transplanted there or elsewhere in the organism led us to study the in vitro growth of different cells or bacteria exposed to the extracts of normal or regenerating liver and/or sera from these animals. Further, sterile used bacterial media were added to bacterial or cell cultures, respectively. Depending on the model, liver extracts-particularly extracts and sera from mice with regenerating liver-were shown to inhibit radioactive thymidine incorporation in the cells. In these experiments, the number of bacteria or cells per culture was lower than in otherwise treated corresponding cultures. Further, used sterile media of bacterial cultures stimulated the growth of bacteria but inhibited thymidine incorporation into fibrosarcoma cells in vitro. Whether this means that one or several common regulators exist in nature appears as an intriguing, but still completely open question. The idea of controlling tumor growth by using such regulatory growth factors seems very provocative.  相似文献   

15.
Bacteria carrying resistance genes for many antibiotics are moving beyond the clinic into the community, infecting otherwise healthy people with untreatable and frequently fatal infections. This state of affairs makes it increasingly important that we understand the sources of this problem in terms of bacterial biology and ecology and also that we find some new targets for drugs that will help control this growing epidemic. This brief and eclectic review takes the perspective that we have too long thought about the problem in terms of treatment with or resistance to a single antibiotic at a time, assuming that dissemination of the resistance gene was affected by simple vertical inheritance. In reality antibiotic resistance genes are readily transferred horizontally, even to and from distantly related bacteria. The common agents of bacterial gene transfer are described and also one of the processes whereby nonantibiotic chemicals, specifically toxic metals, in the environment can select for and enrich bacteria with antibiotic multiresistance. Lastly, some speculation is offered on broadening our perspective on this problem to include drugs directed at compromising the ability of the mobile elements themselves to replicate, transfer, and recombine, that is, the three “infrastructure” processes central to the movement of genes among bacteria.  相似文献   

16.
Bacteria carrying resistance genes for many antibiotics are moving beyond the clinic into the community, infecting otherwise healthy people with untreatable and frequently fatal infections. This state of affairs makes it increasingly important that we understand the sources of this problem in terms of bacterial biology and ecology and also that we find some new targets for drugs that will help control this growing epidemic. This brief and eclectic review takes the perspective that we have too long thought about the problem in terms of treatment with or resistance to a single antibiotic at a time, assuming that dissemination of the resistance gene was affected by simple vertical inheritance. In reality antibiotic resistance genes are readily transferred horizontally, even to and from distantly related bacteria. The common agents of bacterial gene transfer are described and also one of the processes whereby nonantibiotic chemicals, specifically toxic metals, in the environment can select for and enrich bacteria with antibiotic multiresistance. Lastly, some speculation is offered on broadening our perspective on this problem to include drugs directed at compromising the ability of the mobile elements themselves to replicate, transfer, and recombine, that is, the three "infrastructure" processes central to the movement of genes among bacteria.  相似文献   

17.
Repair of DNA containing O6-alkylguanine.   总被引:11,自引:0,他引:11  
A E Pegg  T L Byers 《FASEB journal》1992,6(6):2302-2310
O6-Alkylguanines, important DNA adducts formed by alkylating agents, can lead to mutations and to cell death unless repaired. The major pathway of repair involves the transfer of the alkyl group from the DNA to a cysteine acceptor site in the protein O6-alkylguanine-DNA alkyltransferase. The alkyltransferase brings about this transfer without need for cofactors and the DNA is restored completely by the action of a single protein, but the cysteine acceptor site is not regenerated and the number of O6-alkylguanines that can be repaired is equal to the number of active alkyltransferase molecules. The alkylated form of the protein is unstable in mammalian cells and is degraded rapidly. Cloning of the cDNAs for the alkyltransferase proteins from bacteria, yeast, and mammals indicates a significant similarity, particularly in the region surrounding the cysteine acceptor site. There is a major difference in the regulation of the alkyltransferase between mammalian cells and certain bacteria, where it is induced as part of the adaptive response to alkylating agents. Regulation of the content of alkyltransferase in mammalian cells differs with species and cell type and, in some cases, the level of the protein is increased by exposure to alkylating agents or X rays. A significant fraction of human tumor cell lines do not express the alkyltransferase gene and, thus, are much more sensitive to mutagenesis and killing by alkylating agents. The frequency of primary tumor cells that lack alkyltransferase protein is not yet clear. However, it is known that the level of alkyltransferase in tumors is a significant factor in resistance to both methylating agents and bifunctional chloroethylating agents. Inactivation of the alkyltransferase, which can be brought about by pretreatment with an alkylating agent or by exposure to O6-benzylguanine (a powerful nontoxic inhibitor), sensitizes tumor cells to these chemotherapeutic alkylating agents and may prove a useful therapeutic strategy.  相似文献   

18.
Autophagy and Human Disease   总被引:1,自引:0,他引:1  
As a conserved cellular degradative pathway in eukaryotes, autophagy relieves cells from various types of stress. There are different forms of autophagy, and the ongoing studies of the molecular mechanisms and cellular functions of these processes are unraveling their significant roles in human health. Currently, the best-studied of these pathways is macroautophagy, which is linked to a range of human disease. For example, as part of the host immune defense mechanism, macroautophagy is activated to eliminate invasive pathogenic bacteria; however, in some cases bacteria subvert this process for their own replication. Autophagy also contributes to endogenous major histocompatibility complex class II antigen presentation, reflecting its role in adaptive immunity. In certain neurodegenerative diseases, which are associated with aggregation-prone proteins, macroautophagy plays a protective role in preventing or reducing cytotoxicity by clearance of the toxic proteins; however, the autophagy-dependent processing of some components correlates with the pathogenesis of certain myopathies. Finally, autophagy acts as a mechanism for tumor suppression, although some cancer cells use it as a cytoprotective mechanism. Thus, a fundamental paradox of autophagy is that it can act to promote both cell survival and cell death, depending on the specific conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号