首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GA3-treatment of dwarf maize seedlings resulted in the elongation of the leaf sheath and also an increase in α-amylase activity. Excised leaf sheaths did not respond to GA3 in leaf shealh length and α-amylase activity. Increase in the enzyme activity is always accompanied by an increase in the length of the leaf sheath. α-Amylase activity gradually increased as the growth of the first leaf proceeded, and a parallelism was found between the length of the leaf sheath and the enzyme activity, suggesting that the degree, of the enzyme activity depends on the length of the leaf sheath. On the other hand, IAA did not affect α-amylase activity while it promoted leaf sheath elongation. This suggests that elongation per se is not associated with the increase in α-amylase activity and that the enzyme-promoting effect is specific to gibberellin. Higher α-amylase activity and lower content of reducing sugars were detected in the older tissue of the leaf sheath, that is, in the upper half. This was the same for GAlrealed seedlings. The amount of reducing sugars was less in GA3-trealcd seedlings. Oxygen-uptake of the leaf sheath was higher in the upper half in both controls and GA3-treated seedlings. It was slightly higher in the latter than in the former. From these results it was discussed 1o conclude that the processes of the GA3-induced elongation and increase in α-amylase activity of the leaf sheath are independent of one another.  相似文献   

2.
Two maize inbreds, CM7 and CM49, and CM7 × CM49, their F1 hybrid (which displayed significant heterosis), were examined with regard to response to exogenous gibberellin A3 (GA3), and in their ability to metabolize GA20, a native GA of maize. The leaf sheath elongation response to GA3 was far greater for the imbreds than for their hybrid. The inbreds also displayed significant elongation of the leaf blades in response to GA3, whereas the hybrid was unaffected. Promotion of cell division in the leaf sheath of CM7 and the hybrid was effected by GA3, but no promotion of cell elongation was observed in CM49, even though significant leaf sheath elongation occurred. Shoot dry weight of both inbreds was significantly increased by GA3, but response by the hybrid in this parameter was slight and variable. Root dry weight of CM7 was significantly increased by GA3, but was unchanged in CM49 and the hybrid. Thus, inbred shoot dry weight increases effected by GA3 were not at the expense of the root system. Rapid metabolism of [2,3-3H]GA20 occurred in all genotypes, although genotypic differences were observed. The hybrid had the highest rates of metabolism to GA glucosyl conjugate-like substances. Oxidative metabolism was also fastest in the hybrid, followed by CM7, and slowest in CM49, the slowest-growing inbred. Thus, rate of GA20 metabolism is under genetic control in normal (i.e. not dwarfed) maize genotypes. These results, taken together with previous reports that the hybrid has significantly enhanced levels of endogenous GA-like substances, suggest that GA play a role in the expression of heterosis in maize.  相似文献   

3.
The mechanism of gibberellin (GA)-induced leaf sheath growth was examined using a dwarf mutant of rice (Oryza sativa L. cv. Tan-ginbozu) treated in advance with an inhibitor of GA biosynthesis. Gibberellic acid (GA3) enhanced the growth of the second leaf sheath, but auxins did not. Measurement of the mitotic index and cell size revealed that cell elongation rather than cell division is promoted by GA3. Gibberellic acid increased the extensibility of cell walls in the elongation zone of the leaf sheath. It also increased the total amount of osmotic solutes including sugars in the leaf sheath, but did not increase the osmotic concentration of the cell sap, due to an accompanying increase in cell volume by water absorption. In the later stage of GA3-induced growth, starch granules completely disappeared from leaf sheath cells, whereas dense granules remained in control plants. These findings indicate that GA enhances cell elongation by increasing wall extensibility, osmotic concentration being kept unchanged by starch degradation. Received: 28 August 1997 / Accepted: 16 October 1997  相似文献   

4.
The induction of α-amylase synthesis in barley aleurone by cyclic 3′,5′-adenosine monophosphate or GA3 was inhibited by abscisic acid. The concentration of ABA required to inhibit α-amylase induction by the cyclic nucleotide in the extract was one-fiftieth to one hundredth of that required for GA3-induced α-amylase. It is concluded that the effects of ABA on GA3 and cyclic nucleotide induced α-amylase synthesis in the aleurone are independent and indirect.  相似文献   

5.
The aleurone of RB-3 shrunken-2 (sh2) maize kernels is deficient in α-amylase activity during germination, but exogenous applications of gibberellic acid (GA3) (0.001–10 μm ) induced low levels of activity. The highest activity was measured in the aleurone of kernels treated with 10 μm GA3 (14,600 ± 945 units), but was lower than untreated Starchy (Su) aleurone tissues (35,280 ± 5,010 units). On isoelectric focusing gels, no α-amylase isozymes were detected in the untreated sh2 aleurone using starch zymograms or immunoblots, but the 1.0 and 10 μm mm GA3 treatments induced nearly all the isozymes (eight to ten) present in the Su aleurone. There was a very low level of α-amylase mRNA in the untreated sh2 aleurone, an intermediate level in the 1.0 μm GA3-treated sh2 aleurone, and the highest level in the untreated Su aleurone. On the confocal microscope, the 1.0 μm GA3-treated aleurone cells had enhanced levels of cytoplasmic membranes and RNA compared to untreated sh2 aleurone cells. The 1.0 μm GA3 treatment also induced shoot elongation in the sh2 seedlings. The data demonstrate that the sh2 aleurone is deficient in its function to produce α-amylases, and exogenous GA3 can partially restore cell function in the sh2 kernels.  相似文献   

6.
The growth and IAA-oxidase activity of light-grown cucumber seedlings (cv. Aonagajibae) were investigated in response to GA3 and IAA. Both GA3 and IAA induced significant elongation of the hypocotyl. The fresh and dry weights of the hypocotyl increased due to GA3 or IAA treatment, whereas no significant change was observed in the cotyledons of GA3-treated seedlings as compared with the controls. The fresh and dry weights of IAA-treated cotyledons were both lower than those of controls. Treatment with GA3 or IAA resulted in retardation of IAA-oxidase activity in the hypocotyl and cotyledons. The degree of retardation was less in the cotyledons than in the hypocotyl. An inverse relationship was recognized between GA3- or IAA-induced elongation and IAA-oxidase activity in the hypocotyl. The auxin-mediated mechanism for gibberellin action was discussed.  相似文献   

7.
T J Mozer 《Cell》1980,20(2):479-485
The patterns of protein synthesis in barley aleurone layers treated with gibberellic acid (GA3) and abscisic acid (ABA) are compared with the patterns observed in wheat germ in vitro translation assays directed by RNA isolated from similarly treated layers. When used alone, GA3 and ABA both induce the formation of new translatable mRNAs and cause new proteins to be synthesized. The effects of GA3 are more dramatic than those of ABA. In GA3-treated tissues, overall protein synthesis is redirected to produce large quantities of α-amylase and a few other GA3-induced proteins, while other protein synthesis is reduced or stopped. Large amounts of new translatable mRNA for α-amylase are also induced such that the dominant in vitro translation product is α-amylase. These changes are blocked by the simultaneous addition of ABA to the tissue. In GA3 plus ABA-treated layers, few changes in protein synthesis in vivo are observed when compared to protein synthesis in untreated tissue, although the induction of mRNA for α-amylase and the other GA3-induced mRNAs does occur. This indicates that ABA does not interfere with GA3 induction of translatable mRNAs but prevents the translation of these mRNAs in vivo. Thus ABA and potentially GA3 regulate the translation of proteins in vivo in barley aleurone layers.  相似文献   

8.
Fourty-two kinds of benzaldehyde O-alkyloximes derived from benzaldehydes were prepared and their biological activities were investigated. Introduction of a fluorine or bromine atom to the benzene ring of the oximes enhanced their phytotoxic activity. The O-alkyloximes with a fluorine atom at the 3 or 4 position of the benzene ring were more active than the other oximes in the GA3-induced α-amylase induction inhibition test. In the transpiration test, 4-bromobenzaldehyde O-carboxylmethyloxime was the most active. The O-alkyloximes exhibited weak abscisic acid-like activity by inhibiting not only the germination, root growth and transpiration of higher plants but also GA3-induced α-amylase induction in embryoless barley seeds.  相似文献   

9.
The potential role of xyloglucan endotransglycosylase (XET)in GA-stimulated cell elongation was investigated during leafexpansion in barley (Hordeum vulgare L.). XET activity in aqueousextracts of leaves was detected in all segments along the elongatingblade of leaf 1 of seedlings, but was at highest levels in basalsegments. Leaf 1 elongation rates of gibberellin (GA)-responsivedwarf mutants were lower than the wild type, and accompaniedby reduced levels of XET activity. Leaf elongation rates ofthe dwarfs increased following treatment with gibberellic acid(GA3) associated with higher levels of XET activity. The slendermutant, crossed into a dwarfing background, exhibited high ratesof leaf 1 elongation and high levels of XET activity withoutadded GA3. The elongation of leaf 3 in a GA-responsive dwarfmutant was also studied. Treatment with GA3 resulted in bladeand sheath lengths being 5-fold and 7-fold (respectively) thelengths of controls, and again there were increases in bladeand sheath XET activities. To investigate the basis for changesin XET activity levels two XET-related cDNA clones were isolated.RNAs detected by the two clones occurred at the highest levelsin basal segments of rapidly elongating leaves, but they haddifferent distribution patterns along the leaf. Overall, thedata indicate that an XET-like activity is detectable in barleyleaves, that the activity level and related. Key words: Gibberellin (GA), leaf elongation, Hordeum vulgare, xyloglucan endotransglycosylase (XET)  相似文献   

10.
Aleurone layers, with testa attached, were prepared from degermed, decorticated barley with the aid of a fungal enzyme preparation. The preparations appeared intact under the scanning electron microscope. By using antibiotics only in an early stage preparations were obtained uncontaminated by micro-organisms and which, when incubated under optimal conditions with gibberellic acid, GA3, produced near-maximal amounts of α-amylase. The enzyme accumulated in the tissue before it was released into the incubation medium. Daily replacement of the incubation medium, containing GA3, depressed the quantity of α-amylase produced. α-Amylase was also produced in response to gibberellins GA1, GA4 and GA7 and, to a much lesser extent, helminthosporol and helminthosporic acid. A range of other substances, reported elsewhere to induce α-amylase formation, failed to do so in these trials. At some concentrations, glutamine marginally enhanced the quantity of enzyme formed during prolonged incubations. It is confirmed that α-glucosidase occurs in the aleurone layer and embryo of ungerminated barley, and increases in amount during germination. GA3 is shown to enhance this increase. When embryos arc burnt, to prevent gibberellin formation, no rise in α-glucosidase levels occurs unless GA3 is supplied to the grains. As the activity of α-glucosidase and other enzymes have been determined as ‘α-amylase’ by some assay methods, their alterations in activity in response to GA3 necessitates a re-evaluation of the evidence for de novo) synthesis of α-amylase in aleurone tissue.  相似文献   

11.
Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA3 were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA3 treatment. ASR5 out of these six proteins was significantly regulated by GA3 at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA3, these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.  相似文献   

12.
Stimulation of α-amylase activity was observed in Porteresia coarctata immature seeds (20-day-old) when de-embryonated prewashed half seeds were incubated in media containing gibberellic acid (GA3, 10?5M). No such activity was observed in mature seeds even when GA3 concentration was increased up to five fold. ABA suppressed the GA3 enhanced α-amylase synthesis up to nearly 70% in the immature seeds. Absence of this enzyme activity in mature seeds may be due to high levels of ABA. The immature aleurone showed a 23 kD polypeptide induced by ABA.  相似文献   

13.
We examined the physiological effects of brassinosteroids (BRs) on early growth of Arabidopsis. Brassinazole (Brz), a BR biosynthesis inhibitor, was used to elucidate the significance of endogenous BRs. It inhibited growth of roots, hypocotyls, and cotyledonous leaf blades dose-dependently and independent of light conditions. This fact suggests that endogenous BRs are necessary for normal growth of individual organs of Arabidopsis in both photomorphogenetic and skotomorphogenetic programs. Exogenous brassinolide (BL) promoted hypocotyl elongation remarkably in light-grown seedlings. Cytological observation disclosed that BL-induced hypocotyl elongation was achieved through cell enlargement rather than cell division. Furthermore, a serial experiment with hormone inhibitors showed that BL induced hypocotyl elongation not through gibberellin and auxin actions. However, a synergistic relationship of BL with gibberellin A3 (GA3) and indole-3-acetic acid (IAA) was observed on elongation growth in light-grown hypocotyls, even though gibberellins have been reported to be additive to BR action in other plants. Taken together, our results show that BRs play an important role in the juvenile growth of Arabidopsis; moreover, BRs act on light-grown hypocotyl elongation independent of, but cooperatively with, gibberellins and auxin.  相似文献   

14.
The excised, hooked bean hypocotyl was the system used to determine wheiher the ‘auxin- and gibberellin like’ effect of the lipoidal pollen extract, Brass in-complex (Br), were mediated through, or independent of, auxin and gibberellin. The morphogenetic events of hook opening and hypocotyl elongation in this system are regulated by auxin and gibberellin, respectively. Brassin complex, like IAA, elicited a book closure in (he dark and retarded its opening in red light. This effect was synergized by T1BA, IAA and the presence of the auxin-producing organs, the epicotyl and cotyledons. Br-elicited hook closure was inhibited by the antiauxin. PCIB. Both GA3 and Br totally reversed the light inhibition of hypocotyl elongation. The GA3-effect, but nol the Br elicited elongation, was overcome by Ancymidol. Hypocotyl elongation was partially inhibited by TIBA and PCIB. suggesting a possible auxin involvement also in this effect of Br. Br may elicit its growth responses through an effect on endogenous auxin levels, In this way it is different from other lipoidat growth regulators, such as the oleanimins which require the presence of exogenous growth regulators for activity.  相似文献   

15.
Fresh and dry weights and leaf size of Poa pratensis were reducedwhen treated with 6-azauracil (AzU), (2-chloroethyl)phosphonicacid (CEPA), or (2-chloroethyl)trimethylammonium chloride (CCC).AzU and CEPA inhibited epidermal cell division without inhibitingcell elongation, while CCC inhibited mainly cell elongationand cell division to a small extent. The ratio of blade lengthto sheath length and the blade length/width ratio were reduced,but leaf emergence and tillering were increased by AzU and CEPA.CCC affected only the latter three features. Like GA3, CEPAinduced stem formation, but internodes were shorter. GA3 was ineffective in preventing leaf-growth inhibition byAzU, which inhibited Ga3-induced cell elongation. The inhibitoryeffect of CEPA on leaf growth was apparently reversed by GA3,but this was due solely to increased cell elongation, the reductionin cell number being unaffected. Ga3 reversed the effect ofCCC on leaf length, as well as on cell size and number. Simultaneousapplication of the inhibitors produced a complex interactionin reducing leaf length and number and size of epidermis cells.It is postulated that AzU, CEPA, and CCC have different modesof action because they have specific effects on plant growthand different effects on GA3-induced cell elongation.  相似文献   

16.
Abstract The effects of light and gibberellic acid (GA3) on growth and phenylalanine ammonia-lyase (PAL) activity were studied in seedlings of lettuce (Lactuca sativa L.). Using an in vivo assay for PAL it was shown that wounding caused by excising hypocotyls results in an increase in PAL activity with time that can mask the effect of light on the activity of this enzyme. When hypocotyl sections were excised from light-treated seedlings immediately prior to the in vivo assay of PAL, light was shown to cause a marked increase in PAL activity. Experiments with an inhibitor of PAL activity, α-aminooxy-β-phenylpropionic acid (AOPP), confirmed that the volatile radioactive products measured in the in vivo assay resulted from the activity of PAL. Gibberellic acid suppresses the light-induced increase in PAL activity and there is an inverse relationship between GA3-induced growth and the activity of PAL. Over a wide range of GA3 concentrations, the activity of PAL is also inversely correlated with growth rate along the length of the hypocotyl section; the upper halves of sections elongate more rapidly and have lower levels of PAL than the lower halves. Despite the strong correlation between growth and PAL activity, experiments with AOPP and t-cinnamic acid show that it is unlikely that elongation is regulated directly by products of PAL activity.  相似文献   

17.
Effects of camptothecin, a naturally occurring alkaloid, on seed germination varied from promotive to inhibitory, depending on the species used. It markedly inhibited seedling root growth but its inhibition of hypocotyl growth varied among species. Camptothecin inhibited GA3-induced dark germination of lettuce (Lactuca sativa L.) seeds and hypocotyl elongation of seedlings. In contrast to ABA, the camptothecin inhibition of GA3-induced germination could not be overcome by cytokinin. When seeds were germinated at 29C with a 0.5 h light treatment, little or no germination occurred in the camptothecin treatment, but addition of cytokinin overcame this inhibition.  相似文献   

18.
In rice, many dwarf mutants have been isolated and characterized. We have investigated the relationship between dwarfism and the gibberellin (GA)-mediated control of physiological processes. Twenty-three rice cultivars and mutants (9 normal, 3 semi-dwarf, 11 dwarf) were analyzed in terms of two GA-mediated processes, namely, elongation of shoots and production of -amylase activity in the endosperm. As a result, we identified four different groups (groups N, T, D and E). Two-dimensional plotting of the extent of induction of -amylase in the endosperm versus the extent of enhancement of shoot elongation upon treatment with exogenous gibberellic acid (GA3) provided a useful method for the rapid allocation of large numbers of dwarf mutants of rice to the various groups. Members of group N (normal type), which included all normal cultivars and semi-dwarf mutants, showed a slight increase in elongation of shoots and a remarkable increase in production of -amylase with the application of GA3 during germination. All of the dwarf mutants were classified as being members of the other three groups. Members of group T (Tan-ginbozu type), including three dwarf mutants, were highly responsive to exogenous GA3 in terms of elongation of shoots and production of -amylase, with associated lower levels of endogenous GA. In contrast, members of the other three groups, including group N, had normal levels of endogenous GAs. Members of group D (Daikoku type) were only slightly responsive to exogenous GA3, an indication that they are GA-insensitive mutants. Members of group E (Ebisu type) had responses to GA3 similar to those of group N, not only in terms of elongation of shoots but also in terms of -amylase production, an indication that they are dwarf mutants that can be considered as neither GA-deficient nor GA-insensitive mutants. We also examined a GA-insensitive mutant selected from among 19 near-isogenic dwarf lines of Shiokari, and we concluded that the d-1 gene is associated with the phenotype of GA-insensitive dwarf mutants.  相似文献   

19.
Ho TH  Shih SC 《Plant physiology》1980,66(1):153-157
A method, based on the diffusion assay of α-amylase on agar plates, was developed to screen for barley (Himalaya) mutants with altered sensitivity to gibberellic acid (GA3) or abscisic acid (ABA) in their aleurone layers. The seeds produced by sodium azide-mutagenized barley were screened for their ability to synthesize and secrete α-amylase when treated with different combinations of hormones. Various GA3-insensitive or supersensitive, ABA-insensitive, temperature-dependent GA3-insensitive, and constitutive mutants have been identified. Several stable mutants with altered GA3 sensitivity were recovered. Two of the homozygous GA3-insensitive mutants have been preliminarily characterized. The GA3-enhanced production of α-amylase and release of phosphatase are hampered in these mutants. However, they have normal stem height, and the uptake of GA3 by their aleurone layers appears to be the same as that of wild-type barley. They are most likely regulatory mutants affecting both α-amylase synthesis and phosphatase release.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号