首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the addition and withdrawal of gibberellic acid (GA3) and Ca2+ on enzyme synthesis and secretion by barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. Incubation of layers in GA3 plus Ca2+ affects the total amount of secreted α-amylase (EC 3.2.1.1) and acid phosphatase (EC 3.1.3.2) by promoting the appearance of different isoenzymic forms of these enzymes. The release of α-amylase isoenzymes 1–4 in response to GA3 plus Ca2+ has a lag of 6 h. When layers are incubated in GA3 alone for 6 h prior to the addition of Ca2+, isoenzymes 1–4 appear in the medium after only 30 min. When the addition of Ca2+ to layers pretreated in GA3 is delayed beyond 12 h, its effectiveness in stimulating the synthesis and release of isoenzymes 3 and 4 is diminished. After 35 h of preincubation in GA3, addition of Ca2+ will not stimulate synthesis of α-amylase isoenzymes 3 and 4. Aleurone layers preincubated for 6 h in GA3 will respond to Ca2+ when the GA3 is withdrawn from the incubation medium by producing α-amylase isoenzymes 1–4. The converse is not the case, however, since layers preincubated in Ca2+ for 6 h will not produce all isoenzymes of α-amylase when subsequently incubated in GA3. The Ca2+-stimulated release of α-amylase from GA3 pre-treated layers is dependent on the time of incubation in Ca2+ and the concentration of the ion. The response to Ca2+ is temperature-dependent, and other divalent cations such as Mg2+ cannot substitute for Ca2+. We conclude that Ca2+ influences α-amylase release by influencing events at the biochemical level.  相似文献   

2.
During germination the aleurone layer of barley grains becomes progressively less able to form more α-amylase in response to a dose of gibberellic acid (GA3). This decline appears to be linked to the presence of a growing embryo. In whole grains the embryo ‘modulates’ the response (α-amylase formation) to controlled external applications of GA3 in a dose-dependent manner. Sugars, and some other metabolites, repress α-amylase formation in transected grains, apparently by reducing levels of endogenously produced gibberellins. This effect is partly, but not completely, reversed by additions of GA3. External applications of GA3 augment the levels of several gibberellin fractions within the grain. The nature of the gibberellin material remaining on the surface of the grains alters with time. Grains treated with GA3 contain a conjugate of low biological activity, possibly a glycoside, that is hydrolysed by a mixed glycosidase preparation to release a biologically-active gibberell in resembling GA3.  相似文献   

3.
The induction of α-amylase synthesis in barley aleurone by cyclic 3′,5′-adenosine monophosphate or GA3 was inhibited by abscisic acid. The concentration of ABA required to inhibit α-amylase induction by the cyclic nucleotide in the extract was one-fiftieth to one hundredth of that required for GA3-induced α-amylase. It is concluded that the effects of ABA on GA3 and cyclic nucleotide induced α-amylase synthesis in the aleurone are independent and indirect.  相似文献   

4.
The effects of gibberellic acid (GA3) and calcium ions on the production of α-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA3 or Ca2+ show qualitative and quantitative changes in hydrolase production following incubation in either GA3 or Ca2+ or both. Incubation in H2O or Ca2+ results in the production of low levels of α-amylase or acid phosphatase. The addition of GA3 to the incubation medium causes a 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of Ca2+ at 10 millimolar causes a further 8- to 9-fold increase in α-amylase release and a 75% increase in phosphatase release. Production of α-amylase isoenzymes is also modified by the levels of GA3 and Ca2+ in the incubation medium. α-Amylase 2 is produced under all conditions of incubation, while α-amylase 1 appears only when layers are incubated in GA3 or GA3 plus Ca2+. The synthesis of α-amylases 3 and 4 requires the presence of both GA3 and Ca2+ in the incubation medium. Laurell rocket immuno-electrophoresis shows that two distinct groups of α-amylase antigens are present in incubation media of aleurone layers incubated with both GA3 and Ca2+, while only one group of antigens is found in media of layers incubated in GA3 alone. Strontium ions can be substituted for Ca2+ in increasing hydrolase production, although higher concentrations of Sr2+ are required for maximal response. We conclude that GA3 is required for the production of α-amylase 1 and that both GA3 and either Ca2+ or Sr2+ are required for the production of isoenzymes 3 and 4 of barley aleurone α-amylase.  相似文献   

5.
The effect of calcium on the secretion of α-amylase (EC 3.2.1.1) and other hydrolases from aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) was studied. Withdrawal of Ca2+ from the incubation medium of aleurone layers preincubated in 5 μM gibberellic acid (GA3) and 5 mM CaCl2 results in a 70–80% reduction in the secretion of α-amylase activity to the incubation medium. Agar-gel electrophoresis shows that the reduction in α-amylase activity following Ca2+ withdrawal is correlated with the disappearance of group B isoenzymes from the incubation medium. The secretion of isoenzymes of group A is unaffected by Ca2+. The addition of Ca2+ stimulates the secretion of group-B isoenzymes but has no measurable effect on either the α-amylase activity or the isoenzyme pattern of aleurone-layer extracts. Pulse-labelling experiments with [35S]methionine show that Ca2+ withdrawal results in a reduction in the secretion of labelled polypeptides into the incubation medium. Immunochemical studies also show that, in the absence of Ca2+, α-amylase isoenzymes of group B are not secreted into the incubation medium. In addition to its effect on α-amylase, Ca2+ influences the secretion of other proteins including several acid hydrolases. The secretion of these other proteins shows the same dependence on Ca2+ concentration as does that of α-amylase. Other cations can promote the secretion of α-amylase to less and varying extents. Strontium is 85% as effective as Ca2+ while Ba2+ is only 10% as effective. We conclude that Ca2+ regulates the secretion of enzymes and other proteins from the aleurone layer of barley.  相似文献   

6.
The effects of gibberellic acid (GA3) and Ca2+ on the synthesis and secretion of α-amylase from protoplasts of barley (Hordeum vulgare L. cv Himalaya) aleurone were studied. Protoplasts undergo dramatic morphological changes whether or not the incubation medium contains GA3, CaCl2, or both. Incubation of protoplasts in medium containing both GA3 and Ca2+, however, causes an increase in the α-amylase activity of both incubation medium and tissue extract relative to controls incubated in GA3 or Ca2+ alone. Isoelectric focusing shows that adding Ca2+ to incubation media containing GA3 increases the levels of α-amylase isozymes having high isoelectric points (pI). In the presence of GA3 alone, only isozymes with low pIs accumulate. The increase in α-amylase activity in the incubation medium begins after 36 hours of incubation, and secretion is complete after about 72 hours. Protoplasts require continuous exposure to Ca2+ to maintain elevated levels of α-amylase release. Immunoelectrophoresis shows that Ca2+ stimulates the release of low-pI α-amylase isozymes by 3-fold and high-pI isozymes by 30-fold over controls incubated in GA3 alone. Immunochemical data also show that the half-maximum concentration for this response is between 5 and 10 millimolar CaCl2. The response is not specific for Ca2+ since Sr2+ can substitute, although less effectively than Ca2+. Pulse-labeling experiments show that α-amylase isozymes produced by aleurone protoplasts in response to GA3 and Ca2+ are newly synthesized. The effects of Ca2+ on the process of enzyme synthesis and secretion is not mediated via an effect of this ion on α-amylase stability or on protoplast viability. We conclude that Ca2+ directly affects the process of enzyme synthesis and transport. Experiments with protoplasts also argue against the direct involvement of the cell wall in Ca2+-stimulated enzyme release.  相似文献   

7.
T J Mozer 《Cell》1980,20(2):479-485
The patterns of protein synthesis in barley aleurone layers treated with gibberellic acid (GA3) and abscisic acid (ABA) are compared with the patterns observed in wheat germ in vitro translation assays directed by RNA isolated from similarly treated layers. When used alone, GA3 and ABA both induce the formation of new translatable mRNAs and cause new proteins to be synthesized. The effects of GA3 are more dramatic than those of ABA. In GA3-treated tissues, overall protein synthesis is redirected to produce large quantities of α-amylase and a few other GA3-induced proteins, while other protein synthesis is reduced or stopped. Large amounts of new translatable mRNA for α-amylase are also induced such that the dominant in vitro translation product is α-amylase. These changes are blocked by the simultaneous addition of ABA to the tissue. In GA3 plus ABA-treated layers, few changes in protein synthesis in vivo are observed when compared to protein synthesis in untreated tissue, although the induction of mRNA for α-amylase and the other GA3-induced mRNAs does occur. This indicates that ABA does not interfere with GA3 induction of translatable mRNAs but prevents the translation of these mRNAs in vivo. Thus ABA and potentially GA3 regulate the translation of proteins in vivo in barley aleurone layers.  相似文献   

8.
Lin PP 《Plant physiology》1984,74(4):975-983
Polyamine metabolism and its relation to the induction of α-amylase formation in the aleurone layers of barley seeds (Hordeum vulgare cv Himalaya) in response to gibberellic acid (GA3) has been investigated. A high-performance liquid chromatographic system has been employed for qualitative and quantitative analyses of putrescine (Put), cadaverine (Cad), spermidine (Spd), spermine (Spm), and agmatine (Agm).

Active polyamine metabolism occurs in the aleurone cells of deembryonate barley half seeds during imbibition. The aleurone layers isolated from fully imbibed half seeds contain about 880 nanomoles of Put, 920 nanomoles of Spd, and 610 nanomoles of Spm as free form per gram tissue dry weight while the levels of Cad and Agm are relatively low. The polyamine levels do not change significantly in the aleurone layers in response to added GA3 (1.5 micromolar) during the 8-hour lag period of the growth substance-induced formation of α-amylase. Also, the polyamine levels are not altered by the presence of abscisic acid (3 micromolar) which inhibits the enzyme induction by GA3. Kinetic studies show that both applied [U-14C]ornithine and [U-14C]arginine are primarily incorporated into Put during 2 hours of incubation, but the incorporation is not significantly affected by added GA3. Additionally, added GA3 does not affect the uptake and turnover of [1,4-14C]Put, nor does it affect the conversion of Put → Spd or Spd → Spm. Treatment of the aleurone layers with GA3 for 2 hours results in no significant changes in the total activities or the specific activities of ornithine decarboxylase and arginine decarboxylase.

Experiments with polyamine synthesis inhibitors demonstrate that the level of Spd in the aleurone layers could be substantially reduced by the presence of methylglyoxal-bis(guanylhydrazone) (MGBG) during imbibition. MGBG treatment does not affect in vivo incorporation of [8-14C] adenosine into ATP. The lower the level of Spd the less α-amylase formation is induced by added GA3. The reduction of GA3-induced α-amylase formation by MGBG treatment can be either completely or partially overcome by added Spd, depending upon the concentration of MGBG used in the imbibition medium. The results indicate that the early action of GA3, with respect to induction of α-amylase formation in barley aleurone layers, appears to be not on polyamine metabolism. However, polyamines, particularly Spd, may be involved in regulation of the growth substance-dependent enzyme induction.

  相似文献   

9.
The subcellular site of -amylase (EC 1.6.2.1) synthesis and transport was studied in barley aleurone layers incubated in the presence or absence of gibberellic acid (GA3). Using [35S]methionine as a marker, the site of amino-acid incorporation into organelles isolated from aleurone layers incubated with and without GA3 was determined following purification by isopycnic sucrose-density-gradient centrifugation. Incorporation of radioactivity into trichloroacetic-acid-insoluble proteins was greatest in those fractions exhibiting activity of an endoplasmic reticulum (ER) marker enzyme. Further fractionation of densitygradient fractions by sodium-dodecyl-sulfate polyacrylamide-gel electrophoresis showed that a major portion of the radioactivity in the ER fractions was present in a protein co-migrating with marker -amylase. This protein was identified as authentic -amylase by immunoadsorbent chromatography and affinity chromatography. The newly synthesized -amylase associated with the ER was shown to be sequenstered within the lumen of the ER by experiments which showed that the enzyme was resistant to proteolytic degradation. The labelled -amylase sequestered in the ER can be chased from this organelle when tissue is incubated in unlabelled methionine following a 1-h pulse of labelled methionine. The isoenzymic forms of -amylase found in tissue homogenates and incubation media of aleurone layers incubated with and without GA3 were characterized after chromatography on diethylaminoethyl cellulose. In homogenates of GA3-treated aleurone layers, five peaks of -amylase activity were detected, while in homogenates of aleurone layers incubated with-out GA3 only three peaks of activity were found. In incubation media, four isoenzymes were found after GA3 treatment and two were found after incubation without GA3. We conclude that at least five -amylase isoenzymes are synthesized by the ER of barley aleurone layers and that this membrane system is involved in the sequestration and transport of four of these isoenzymes.Abbreviations CHA cyclohepataamylose - DEAE-cellulose diethylaminoethyl-cellulose - ER endoplasmic reticulum - GA3 gibberellic acid - SDS-PAGE sodium-dodecyl-sulfate polyacrylamide-gel electrophoresis  相似文献   

10.
The tannins chebulinic acid or tara tannin were added to an incubation system in which GA3 induces enzyme synthesis in endosperm half seeds of barley (Hordeum vulgare L.). The activity of amylase and acid phosphatase in the incubation medium was reduced compared to the activity in the medium after incubation with GA3 alone. When embryo half seeds of barley were incubated with chebulinic acid or tara tannin in the absence of added GA3, the enzyme activity of the incubation medium was also reduced. The activity of preformed enzymes obtained from endosperm half seeds previously induced with GA3 was not reduced by the addition of tannin. Comparisons were made of the amount of enzyme activity from breis of aleurone layers incubated with GA3 in the presence and absence of tannins. The amounts of activity were relatively small and approximately equal in both cases, indicating that secretion from the aleurone was not blocked by the tannins. The reduction of enzyme activity caused by tannins in both endosperm and embryo half seeds could be completely reversed by the addition of GA3.  相似文献   

11.
α-Amylases secreted by the aleurone layer of whole barley grains were relatively rich in histidine and relatively poor in glutamate/glutamine and serine when compared to other eukaryotic proteins. The secreted α-amylases had an estimated 0.5 residues each of glucose, mannose and N-acetylglucosamine per molecule of protein (MW 41 400 daltons), and gave positive staining reactions for carbohydrate on sodium dodecylsulfate polyacrylamide gels. Because the average α-amylase molecule had less than one sugar residue per enzyme molecule, it was concluded that secreted α-amylases were heterogeneous with respect to glycosylation. A second protein co-purified with α-amylase, but the amino acid composition of this protein was different from that of barley or wheat α-amylase. This protein was composed of two 21 500 dalton polypeptides. No significant amounts of L-leucine (14C-U) were incorporated into this second protein in isolated aleurone tissue during incubation with gibberellic acid, perhaps because much of it was already present in the starchy endosperm at the time of hormone addition.  相似文献   

12.
Fourty-two kinds of benzaldehyde O-alkyloximes derived from benzaldehydes were prepared and their biological activities were investigated. Introduction of a fluorine or bromine atom to the benzene ring of the oximes enhanced their phytotoxic activity. The O-alkyloximes with a fluorine atom at the 3 or 4 position of the benzene ring were more active than the other oximes in the GA3-induced α-amylase induction inhibition test. In the transpiration test, 4-bromobenzaldehyde O-carboxylmethyloxime was the most active. The O-alkyloximes exhibited weak abscisic acid-like activity by inhibiting not only the germination, root growth and transpiration of higher plants but also GA3-induced α-amylase induction in embryoless barley seeds.  相似文献   

13.
Barley (c.v. Himalaya) aleurone layers were incubated in [3H]gibberellin A1 (GA1) at low temperatures. At 3 and 4 C, 3H-activity was steadily accumulated in aleurone layers, and this accumulation was correlated with significant [3H]GA1 metabolism. At 1 and 1.5 C, metabolism could not be detected, and at these temperatures aleurone layers equilibrated with the [3H]GA1 concentration in the incubation medium. At equilibrium, the total amount of 3H-activity per unit volume in the aleurone layers was higher than in the incubation medium. Aleurone layers incubated at 0.5 C for 72 hours with [3H]GA1 in the presence of saturating levels of carrier GA1 consistently retained lower levels of 3H-activity than when incubated in [3H]GA1 alone. The retention of [3H]GA1 was unaffected by saturating levels of carrier GA8. GA1 retained by barley aleurone layers that were incubated at 0.5 C for 72 hours was able to induce α-amylase synthesis when aleurone layers were subsequently washed and transferred to a gibberellin-free medium at 25 C.  相似文献   

14.
A method for isolating viable protoplasts in high yield from the aleurone layers of developing wheat grains is described, and the techniques for their subsequent culture outlined. Protoplasts from untreated tissue do not produce α-amylase in response to gibberellic acid (GA3) if the incubation temperature is left at 25°C. However, pre-treatment of the protoplast preparation at temperatures above 27°C for at least 8 h followed by a short incubation at 25°C induces sensitivity to the growth regulator such that α-amylase is produced. The requirements of the sensitisation process are similar to those for intact aleurone tissue although additional adjustment to the calcium ion is beneficial. Pre-treatment of aleurone layers with the sensitising temperature regimes prior to protoplast isolation have the advantage of increasing protoplast viability. Once sensitised, the protoplasts respond to a GA3 concentration as low as 10-11 mol dm-3 with a maximal response at 10-9 mol dm-3. The successful isolation of wheat aleurone protoplasts whose sensitivity to GA3 can be manipulated represents a useful step towards investigating the role of cell membranes in growth-regulator action.  相似文献   

15.
Ho TH  Shih SC 《Plant physiology》1980,66(1):153-157
A method, based on the diffusion assay of α-amylase on agar plates, was developed to screen for barley (Himalaya) mutants with altered sensitivity to gibberellic acid (GA3) or abscisic acid (ABA) in their aleurone layers. The seeds produced by sodium azide-mutagenized barley were screened for their ability to synthesize and secrete α-amylase when treated with different combinations of hormones. Various GA3-insensitive or supersensitive, ABA-insensitive, temperature-dependent GA3-insensitive, and constitutive mutants have been identified. Several stable mutants with altered GA3 sensitivity were recovered. Two of the homozygous GA3-insensitive mutants have been preliminarily characterized. The GA3-enhanced production of α-amylase and release of phosphatase are hampered in these mutants. However, they have normal stem height, and the uptake of GA3 by their aleurone layers appears to be the same as that of wild-type barley. They are most likely regulatory mutants affecting both α-amylase synthesis and phosphatase release.  相似文献   

16.
When decorticated grains were germinated at 14·5°, inorganic substances moved from the endosperm, mainly the aleurone layer, to the embryo. The level of Pi rose in the embryo and endosperm, and the embryo appeared to accumulate Pi against a concentration gradient. The level of organic-P declined in the endosperm, particularly in the alcurone layer. Separated aleurone layers, incubated at 25°, released only small amounts of organic or inorganic phosphate. However, when incubated with gibberellic acid (GA3), a massive release of Pi occurred at the expense of organic phosphates within the tissue. This release followed a sigmoid pattern with time following a lag and was virtually complete in 6 days. Allowing the aleurone layer to dry before incubating with GA3 reduced or abolished the lag period of Pi release and only marginally depressed the total amount ultimately freed. In contrast, α-amylase production was depressed by the longer periods of drying. The major phosphate of the aleurone was phytate (meso-inositol hexaphosphate, IP6), but traces of 1P4, IP3, IP2, IP1, Pi and unidentified phosphates were detected. During incubation with GA3 the IP6 content fell, and the lower esters of inositol rose slightly and then fell in a pattern indicating that the phosphate groups of each IP6 molecule were being sequentially hydrolysed. After 6 days incubation, the tissue phosphates were reduced to a very low level. Attempts to isolate aleurone grains containing phytate were unsuccessful.  相似文献   

17.
Carboxypeptidase and protease activities of hormone-treated barley (Hordeum vulgare cv Himalaya) aleurone layers were investigated using the substrates N-carbobenzoxy-Ala-Phe and hemoglobin. A differential effect of gibberellic acid (GA3) on these activities was observed. The carboxypeptidase activity develops in the aleurone layers during imbibition without the addition of hormone, while the release of this enzyme to the incubation medium is enhanced by GA3. In contrast, GA3 is required for both the production of protease activity in the aleurone layer and its secretion. The time course for development of protease activity in response to GA3 is similar to that observed for α-amylase. Treating aleurone layers with both GA3 and abscisic acid prevents all the GA3 effects described above. Carboxypeptidase activity is maximal between pH 5 and 6, and is inhibited by diisopropylfluorophosphate and p-hydroxymercuribenzoate. We have observed three protease activities against hemoglobin which differ in charge but are all 37 kilodaltons in size on sodium dodecyl sulfate polyacrylamide gels. The activity of the proteases can be inhibited by sulfhydryl protease inhibitors, such as bromate and leupeptin, yet is enhanced by 2-fold with 2-mercaptoethanol. In addition, these enzymes appear to be active against the wheat and barley storage proteins, gliadin and hordein, respectively. On the basis of these characteristics and the time course of GA3 response, it is concluded that the proteases represent the GA3-induced, de novo synthesized proteases that are mainly responsible for the degradation of endosperm storage proteins.  相似文献   

18.
α-Amylase has been purified from de-embryonated seeds of barley (Hordeum vulgare L. cv. Betzes) which have been incubated on 10−6 m gibberellic acid (GA3) following 3 days of imbibition in buffer. Incubation of the half-seeds in up to 10−2 m 5-fluorouracil (5-FU) during the entire incubation period, including imbibition, had no effect on any of the following characteristics of purified α-amylase: thermal stability in the absence of calcium, molecular weight of the enzyme, isozyme composition, specific activity, or the amount of α-amylase synthesized by the aleurone tissue. The synthesis of rRNA and tRNA was strongly inhibited by 5-FU, indicating that the analog had entered the aleurone cells. These results are not in agreement with those of Carlson (Nature New Biology 237: 39-41 [1972]) who found that treatment of barley aleurone with 10−4 m 5-FU prior to the addition of GA3 resulted in decreased thermal stability of GA3-induced α-amylase and who interpreted this as evidence that the mRNA for α-amylase was synthesized during the imbibition of the aleurone tissue and independently of gibberellin action. Results of the present experiments indicate that the thermal stability of highly purified α-amylase is not altered by treatment of barley half-seeds with 5-FU, and that 5-FU cannot be used as a probe to examine the timing of α-amylase mRNA synthesis.  相似文献   

19.
Gibberellic acid enhances α-amylase (EC 3.2.1.1) production in isolated barley aleurone layers after a lag period of 4 to 8 h, and most of the enzyme is produced after 12 h of hormone treatment. Amino acids necessary for protein synthesis in barley aleurone layers are derived from the degradation of storage proteins in this tissue. Since bromate is an inhibitor of barley protease, in the presence of bromate the production of α-amylase in aleurone layers becomes dependent on exogenous amino acids. We have incubated aleurone layers with bromate plus 13C-labeled amino acids and [3H]leucine from 0 to 24, 0 to 12, and 12 to 24 h after the application of gibberellic acid. The chemical quantity of [3H]leucine was negligible in comparison to that of 13C-labeled amino acids. Therefore, any density shift of proteins observed must be due to the incorporation of 13C-labeled amino acids. The density shift of α-amylase and that of newly synthesized proteins (radioactivity profile) were determined by isopycnic centrifugation in CsCl density gradients. The density shift of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 12 to 24 h after the addition of hormone was much larger than that of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 0 to 12 h of hormone treatment. By comparing the density shift of α-amylase with that of newly synthesized proteins, it is apparent that essentially all the amylase molecules are de novo synthesized. We can conclude that there is little or no accumulation of an inactive α-amylase precursor in barley aleurone cells between the time of the application of gibberellic acid and the time of the rapid increase in α-amylase activity.  相似文献   

20.
R. D. Firn 《Planta》1975,125(3):227-233
Summary Gel filtration and centrifugation studies were used to study the distribution of -amylase activity in homogenates of barley (Hordeum vulgare L.) aleurone layers. The results obtained were consistent with the hypothesis that -amylase is secreted via membrane-bound vesicles. The -amylase activity in an homogenate of barley aleurone layers was derived not only from the enzyme retained in the aleurone cells but also from enzyme previously secreted from the cells but apparently retained by the cell walls. The amount of -amylase retained by the cell wall was influenced by factors such as the buffer in which the layers were incubated or the presence of Actinomycin D in the incubation medium.Abbreviations GA3 gibberellic acid - RER rough endoplasmic reticulum - Act. D Actinomycin D  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号