首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cln3是酿酒酵母G1期周期蛋白中的一种,为了研究Cln3在细胞周期与形态发生中的作用,我们构建了酿酒酵母CLN3基因的缺失株,并对其表型进行了分析。结果显示,cln3缺失株对α信息素的敏感性增强,α信息素诱导的细胞周期停滞现象明显大于野生型菌株,这种增强作用不受Sgvl因子的影响。同时,与野生菌相比cln3缺失株的细胞形态也有明显变化,双倍体cln3缺失株细胞的顶端生长能力增强而单倍体细胞的侵入生长能力则受到抑制。结果表明,与酿酒酵母的另外两个G1期周期蛋白Clnl、Cln2不同,Cln3在形态发生中有其独特的功能与作用方式。  相似文献   

2.
3.
Han BK  Aramayo R  Polymenis M 《Genetics》2003,165(2):467-476
How organelle biogenesis and inheritance is linked to cell division is poorly understood. In the budding yeast Saccharomyces cerevisiae the G(1) cyclins Cln1,2,3p control initiation of cell division. Here we show that Cln3p controls vacuolar (lysosomal) biogenesis and segregation. First, loss of Cln3p, but not Cln1p or Cln2p, resulted in vacuolar fragmentation. Although the vacuoles of cln3delta cells were fragmented, together they occupied a large space, which accounted for a significant fraction of the overall cell size increase in cln3delta cells. Second, cytosol prepared from cells lacking Cln3p had reduced vacuolar homotypic fusion activity in cell-free assays. Third, vacuolar segregation was perturbed in cln3delta cells. Our findings reveal a novel role for a eukaryotic G(1) cyclin in cytoplasmic organelle biogenesis and segregation.  相似文献   

4.
5.
To identify cyclin-dependent kinase mutants with relaxed cyclin requirements, CDC28 alleles were selected that could rescue a yeast strain expressing as its only CLN G1 cyclin a mutant Cln2p (K129A,E183A) that is defective for Cdc28p binding. Rescue of this strain by mutant CDC28 was dependent upon the mutant cln2-KAEA, but additional mutagenesis and DNA shuffling yielded multiply mutant CDC28-BYC alleles (bypass of CLNs) that could support highly efficient cell cycle initiation in the complete absence of CLN genes. By gel filtration chromatography, one of the mutant Cdc28 proteins exhibited kinase activity associated with cyclin-free monomer. Thus, the mutants' CLN bypass activity might result from constitutive, cyclin-independent activity, suggesting that Cdk targeting by cyclins is not required for cell cycle initiation.  相似文献   

6.
The smut fungi are obligately parasitic during the sexual phase of their life cycle, and the mating-type genes of these fungi play key roles in both sexual development and pathogenicity. Among species of smut fungi it is common to find a bipolar mating system in which one locus with two alternate alleles is believed to control cell fusion and establishment of the infectious cell type. Alternatively, several species have a tetrapolar mating system in which two different genetic loci, one of which has multiple alleles, control fusion and subsequent development of the infection hyphae. Cloned sequences from the a and b mating-type loci of the tetrapolar smut fungus Ustilago maydis were used as hybridization probes to DNAs from 23 different fungal strains, including smut fungi with both tetrapolar and bipolar mating systems. In general, all of the smut fungi hybridized with the mating-type genes from U. maydis, suggesting conservation of the sequences involved in mating interactions. A selection of DNAs from other ascomycete and basidiomycete fungi failed to hybridize with the U. maydis mating-type sequences. Exceptions to this finding include hybridization of DNA from the a1 idiomorph of U. maydis to DNA from one strain of U. violacea and hybridization of both a idiomorphs to DNA from Saccharomyces cerevisiae.  相似文献   

7.
G1 cyclins coordinate environmental conditions with growth and differentiation in many organisms. In the pathogen Candida albicans, differentiation of hyphae is induced by environmental cues but in a cell cycle-independent manner. Intriguingly, repressing the G1 cyclin Cln3p under yeast growth conditions caused yeast cells to arrest in G1, increase in size, and then develop into hyphae and pseudohyphae, which subsequently resumed the cell cycle. Differentiation was dependent on Efg1p, Cph1p, and Ras1p, but absence of Ras1p was also synthetically lethal with repression of CLN3. In contrast, repressing CLN3 in environment-induced hyphae did not inhibit growth or the cell cycle, suggesting that yeast and hyphal cell cycles may be regulated differently. Therefore, absence of a G1 cyclin can activate developmental pathways in C. albicans and uncouple differentiation from the normal environmental controls. The data suggest that the G1 phase of the cell cycle may therefore play a critical role in regulating hyphal and pseudohyphal development in C. albicans.  相似文献   

8.
Cells sense myriad signals during G1, and a rapid response to prevent cell cycle entry is of crucial importance for proper development and adaptation. Cln3, the most upstream G1 cyclin in budding yeast, is an extremely short‐lived protein subject to ubiquitination and proteasomal degradation. On the other hand, nuclear accumulation of Cln3 depends on chaperones that are also important for its degradation. However, how these processes are intertwined to control G1‐cyclin fate is not well understood. Here, we show that Cln3 undergoes a challenging ubiquitination step required for both degradation and full activation. Segregase Cdc48/p97 prevents degradation of ubiquitinated Cln3, and concurrently stimulates its ER release and nuclear accumulation to trigger Start. Cdc48/p97 phosphorylation at conserved Cdk‐target sites is important for recruitment of specific cofactors and, in both yeast and mammalian cells, to attain proper G1‐cyclin levels and activity. Cdk‐dependent modulation of Cdc48 would subjugate G1 cyclins to fast and reversible state switching, thus arresting cells promptly in G1 at developmental or environmental checkpoints, but also resuming G1 progression immediately after proliferative signals reappear.  相似文献   

9.
The phytopathogenic fungus Ustilago maydis is obligately dependent on infection of maize to complete the sexual phase of its life cycle. Mating interactions between haploid, budding cells establish an infectious filamentous cell type that invades the host, induces large tumours and eventually forms large masses of black spores. The ability to switch from budding to filamentous growth is therefore critical for infection and completion of the life cycle, although the signals that influence the transition have not been identified from the host or the environment. We have found that growth in the presence of lipids promotes a filamentous phenotype that resembles the infectious cell type found in planta. In addition, the ability of the fungus to respond to lipids is dependent on both the cAMP signalling pathway and a Ras/MAPK pathway; these pathways are known to regulate mating, filamentous growth and pathogenesis in U. maydis. Overall, these results lead us to hypothesize that lipids may represent one of the signals that promote and maintain the filamentous growth of the fungus in the host environment.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Levels of G1 cyclins fluctuate in response to environmental cues and couple mitotic signaling to cell cycle entry. The G1 cyclin Cln3 is a key regulator of cell size and cell cycle entry in budding yeast. Cln3 degradation is essential for proper cell cycle control; however, the mechanisms that control Cln3 degradation are largely unknown. Here we show that two SCF ubiquitin ligases, SCF(Cdc4) and SCF(Grr1), redundantly target Cln3 for degradation. While the F-box proteins (FBPs) Cdc4 and Grr1 were previously thought to target non-overlapping sets of substrates, we find that Cdc4 and Grr1 each bind to all 3 G1 cyclins in cell extracts, yet only Cln3 is redundantly targeted in vivo, due in part to its nuclear localization. The related cyclin Cln2 is cytoplasmic and exclusively targeted by Grr1. However, Cdc4 can interact with Cdk-phosphorylated Cln2 and target it for degradation when cytoplasmic Cdc4 localization is forced in vivo. These findings suggest that Cdc4 and Grr1 may share additional redundant targets and, consistent with this possibility, grr1Δ cdc4-1 cells demonstrate a CLN3-independent synergistic growth defect. Our findings demonstrate that structurally distinct FBPs are capable of interacting with some of the same substrates; however, in vivo specificity is achieved in part by subcellular localization. Additionally, the FBPs Cdc4 and Grr1 are partially redundant for proliferation and viability, likely sharing additional redundant substrates whose degradation is important for cell cycle progression.  相似文献   

17.
18.
G1 cyclin Cln3 plays a key role in linking cell growth and proliferation in budding yeast. It is generally assumed that Cln3, which is present throughout G1, accumulates passively in the nucleus until a threshold is reached to trigger cell cycle entry. We show here that Cln3 is retained bound to the ER in early G1 cells. ER retention requires binding of Cln3 to the cyclin-dependent kinase Cdc28, a fraction of which also associates to the ER. Cln3 contains a chaperone-regulatory Ji domain that counteracts Ydj1, a J chaperone essential for ER release and nuclear accumulation of Cln3 in late G1. Finally, Ydj1 is limiting for release of Cln3 and timely entry into the cell cycle. As protein synthesis and ribosome assembly rates compromise chaperone availability, we hypothesize that Ydj1 transmits growth capacity information to the cell cycle for setting efficient size/ploidy ratios.  相似文献   

19.
F Cvrckov  K Nasmyth 《The EMBO journal》1993,12(13):5277-5286
Cyclin-dependent protein kinases have a central role in cell cycle regulation. In Saccharomyces cerevisiae, Cdc28 kinase and the G1 cyclins Cln1, 2 and 3 are required for DNA replication, duplication of the spindle pole body and bud emergence. These three independent processes occur simultaneously in late G1 when the cells reach a critical size, an event known as Start. At least one of the three Clns is necessary for Start. Cln3 is believed to activate Cln1 and Cln2, which can then stimulate their own accumulation by means of a positive feedback loop. They (or Cln3) also activate another pair of cyclins, Clb5 and 6, involved in initiating S phase. Little is known about the role of Clns in spindle pole body duplication and budding. We report here the isolation of a gene (CLA2/BUD2/ERC25) that codes for a homologue of mammalian Ras-associated GTPase-activating proteins (GAPs) and is necessary for budding only in cln1 cln2 cells. This suggests that Cln1 and Cln2 may have a direct role in bud formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号