首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelin (ET)-1 is an important peptide in cancer progression stimulating cellular proliferation, tumor angiogenesis and metastasis. ET-1 binds with high affinity to the ETA receptor (R) and ETBR on cancer cells. High levels of tumor ET-1 and ETAR are associated with poor survival of lung cancer patients. Here the effects of ET-1 on epidermal growth factor (EGF)R and HER2 transactivation were investigated using non-small cell lung cancer (NSCLC) cells. ETAR mRNA was present in all 10 NSCLC cell lines examined. Addition of ET-1 to NCI-H838 or H1975 cells increased EGFR, HER2 and ERK tyrosine phosphorylation within 2 min. The increase in EGFR and HER2 transactivation caused by ET-1 addition to NSCLC cells was inhibited by lapatinib (EGFR and HER2 tyrosine kinase inhibitor (TKI)), gefitinib (EGFR TKI), ZD4054 or BQ-123 (ETAR antagonist), GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor) or Tiron (superoxide scavenger). ET-1 addition to NSCLC cells increased cytosolic Ca2+ and reactive oxygen species. ET-1 increased NSCLC clonal growth, whereas BQ123, ZD4054, lapatinib or gefitinib inhibited proliferation. The results indicate that ET-1 may regulate NSCLC cellular proliferation in an EGFR- and HER2-dependent manner.  相似文献   

2.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

3.

Aims

The mechanism by which SR48692 inhibits non-small cell lung cancer (NSCLC) proliferation was investigated.

Main methods

The ability of SR48692 to inhibit the proliferation of NSCLC cell lines NCI-H1299 and A549 was investigated in vitro in the presence or absence of neurotensin (NTS). The ability of NTS to cause epidermal growth factor receptor (EGFR) transactivation was investigated by Western blot using NSCLC cells and various inhibitors. The growth effects and Western blot results were determined in cell lines treated with siRNA for NTSR1.

Key findings

Treatment of A549 or NCI-H1299 cells with siRNA for NTSR1 reduced significantly NTSR1 protein and the ability of SR48692 to inhibit the proliferation of A549 or NCI-H1299 NSCLC cells. Treatment of A549 and NCI-H1299 cells with siRNA for NTSR1 reduced the ability of NTS to cause epidermal growth factor receptor (EGFR) transactivation. SR48692 or gefitinib (EGFR tyrosine kinase inhibitor) inhibited the ability of NTS to cause EGFR and ERK tyrosine phosphorylation. NTS transactivation of the EGFR was inhibited by GM6001 (matrix metalloprotease inhibitor), Tiron (superoxide scavenger) or U73122 (phospholipase C inhibitor) but not H89 (PKA inhibitor). NTS stimulates whereas SR48692 or gefitinib inhibits the clonal growth of NSCLC cells.

Significance

These results suggest that SR48692 may inhibit NSCLC proliferation in an EGFR-dependent mechanism.  相似文献   

4.
Glypican-5 (GPC5) belongs to the glypican family of proteoglycans that have been implicated in a variety of physiological processes, ranging from cell proliferation to morphogenesis. However, the role of GPC5 in human cancer remains poorly understood. We report that knockdown of GPC5 in bronchial epithelial cells promoted, and forced expression of GPC5 in non-small lung cancer (NSCLC) cells suppressed, the anchorage-independent cell growth. In vivo, expression of GPC5 inhibited xenograft tumor growth of NSCLC cells. Furthermore, we found that GPC5 was expressed predominantly as a membrane protein, and its expression led to diminished phosphorylation of several oncogenic receptor tyrosine kinases, including the ERBB family members ERBB2 and ERBB3, which play critical roles in lung tumorigenesis. Collectively, our results suggest that GPC5 may act as a tumor suppressor, and reagents that activate GPC5 may be useful for treating NSCLC.  相似文献   

5.
Thrombopoietin (TPO) is a haematopoietic cytokine mainly produced by the liver and kidneys, which stimulates the production and maturation of megakaryocytes. In the past decade, numerous studies have investigated the effects of TPO outside the haematopoietic system; however, the role of TPO in the progression of solid cancer, particularly lung cancer, has not been well studied. Exogenous TPO does not affect non‐small‐cell lung cancer (NSCLC) cells as these cells show no or extremely low TPO receptor expression; therefore, in this study, we focused on endogenous TPO produced by NSCLC cells. Immunohistochemical analysis of 150 paired NSCLC and adjacent normal tissues indicated that TPO was highly expressed in NSCLC tissues and correlated with clinicopathological parameters including differentiation, P‐TNM stage, lymph node metastasis and tumour size. Suppressing endogenous TPO by small interfering RNA inhibited the proliferation and migration of NSCLC cells. Moreover, TPO interacted with the EGFR protein and delayed ligand‐induced EGFR degradation, thus enhancing EGFR signalling. Notably, overexpressing TPO in EGF‐stimulated NSCLC cells facilitated cell proliferation and migration, whereas no obvious changes were observed without EGF stimulation. Our results suggest that endogenous TPO promotes tumorigenicity of NSCLC via regulating EGFR signalling and thus could be a therapeutic target for treating NSCLC.  相似文献   

6.
Lung cancer, predominantly non-small cell lung cancer (NSCLC), remains the leading cause of cancer-related deaths worldwide. Although epidermal growth factor receptor (EGFR) signaling is important and well studied with respect to NSCLC progression, little is known about how miRNAs mediate EGFR signaling to modulate tumorigenesis. To identify miRNAs that target EGFR, we performed a bioinformatics analysis and found that miR-542-5p down-regulates EGFR mRNA and protein expression in human lung cancer cells (H3255, A549, Hcc827). We observed increases in EGFR association with Ago2 in miR-542-5p-transfected cells. Interestingly, we observed an inverse correlation of miR-542-5p expression and EGFR protein levels in human lung cancer tissue samples, suggesting that miR-542-5p directly targets EGFR mRNA. Furthermore, we found that miR-542-5p inhibited the growth of human lung cancer cells. Our findings suggest that miR-542-5p may act as an important modulator of EGFR-mediated oncogenesis, with potential applications as a novel therapeutic target in lung cancer.  相似文献   

7.
Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.  相似文献   

8.
The immune checkpoint ligand programmed death-ligand 1 (PD-L1) and the transmembrane mucin (MUC) 3A are upregulated in non-small cell lung cancer (NSCLC), contributing to the aggressive pathogenesis and poor prognosis. Here, we report that knocking down the oncogenic MUC3A suppresses the PD-L1 expression in NSCLC cells. MUC3A is a potent regulator of epidermal growth factor receptor (EGFR) stability, and MUC3A deficiency downregulates the activation of the PI3K/Akt and MAPK pathways, which subsequently reduces the expression of PD-L1. Furthermore, knockdown of MUC3A and tyrosine kinase inhibitors (TKIs) in EGFR-mutant NSCLC cells play a synergistic effect on inhibited proliferation and promoted apoptosis in vitro. In the BALB/c nude mice xenograft model, MUC3A deficiency enhances EGFR-mutated NSCLC sensitivity to TKIs. Our study shows that transmembrane mucin MUC3A induces PD-L1, thereby promoting immune escape in NSCLC, while downregulation of MUC3A enhances TKIs effects in EGFR-mutant NSCLC. These findings offer insights into the design of novel combination treatment for NSCLC.  相似文献   

9.
Antibodies are the most rapidly expanding class of human therapeutics, including their use in cancer therapy. Monoclonal antibodies (mAb) against epidermal growth factor (EGF) receptor (EGFR) generated for cancer therapy block the binding of ligand to various EGFR-expressing human cancer cell lines and abolish ligand-dependent cell proliferation. In this study, we show that our mAb against EGFRs, designated as B4G7, exhibited a growth-stimulatory effect on various human cancer cell lines including PC-14, a non-small cell lung cancer cell line; although EGF exerted no growth-stimulatory activity toward these cell lines. Tyrosine phosphorylation of EGFRs occurred after treatment of PC-14 cells with B4G7 mAb, and it was completely inhibited by AG1478, a specific inhibitor of EGFR tyrosine kinase. However, this inhibitor did not affect the B4G7-stimulated cell growth, indicating that the growth stimulation by B4G7 mAb seems to be independent of the activation of EGFR tyrosine kinase. Immunoprecipitation with anti-ErbB3 antibody revealed that B4G7, but not EGF, stimulated heterodimerization between ErbB2 and ErbB3. ErbB3 was tyrosine phosphorylated in the presence of B4G7 but not in the presence of EGF. Further, the phosphorylation and B4G7-induced increase in cell growth were inhibited by AG825, a specific inhibitor of ErbB2. These results show that the ErbB2/ErbB3 dimer functions to promote cell growth in B4G7-treated cells. Changes in receptor-receptor interactions between ErbB family members after inhibition of one of its members are of potential importance in optimizing current EGFR family-directed therapies for cancer.  相似文献   

10.
Long noncoding RNAs (lncRNAs) are involved in the pathology of various tumours, including non‐small cell lung cancer (NSCLC). However, the underlying molecular mechanisms of their specific association with NSCLC have not been fully elucidated. Here, we report that a cytoplasmic lncRNA, DUXAP9‐206 is overexpressed in NSCLC cells and closely related to NSCLC clinical features and poor patient survival. We reveal that DUXAP9‐206 induced NSCLC cell proliferation and metastasis by directly interacting with Cbl‐b, an E3 ubiquitin ligase, and reducing the degradation of epidermal growth factor receptor (EGFR) and thereby augmenting EGFR signaling in NSCLC. Notably, correlations between DUXAP9‐206 and activated EGFR signaling were also validated in NSCLC patient specimens. Collectively, our findings reveal the novel molecular mechanisms of DUXAP9‐206 in mediating the progression of NSCLC and DUXAP9‐206 may serve as a potential target for NSCLC therapy.  相似文献   

11.
Sprouty (Spry) proteins function as inhibitors of receptor tyrosine kinase signaling mainly by interfering with the Ras/Raf/mitogen-activated protein kinase cascade, a pathway known to be frequently deregulated in human non-small cell lung cancer (NSCLC). In this study, we show a consistently lowered Spry2 expression in NSCLC when compared with the corresponding normal lung epithelium. Based on these findings, we investigated the influence of Spry2 expression on the malignant phenotype of NSCLC cells. Ectopic expression of Spry2 antagonized mitogen-activated protein kinase activity and inhibited cell migration in cell lines homozygous for K-Ras wild type, whereas in NSCLC cells expressing mutated K-Ras, Spry2 failed to diminish extracellular signal-regulated kinase (ERK) phosphorylation. Nonetheless, Spry2 significantly reduced cell proliferation in all investigated cell lines and blocked tumor formation in mice. Accordingly, a Spry2 mutant unable to inhibit ERK phosphorylation reduced cell proliferation significantly but less pronounced compared with the wild-type protein. Therefore, we conclude that Spry2 interferes with ERK phosphorylation and another yet unidentified pathway. Our results suggest that Spry2 plays a role as tumor suppressor in NSCLC by antagonizing receptor tyrosine kinase-induced signaling at different levels, indicating feasibility for the usage of Spry in targeted gene therapy of NSCLC.  相似文献   

12.
Interleukin-8 (IL-8) has been reported to promote tumor cell growth in colon cancer cells after binding to its receptors, which are members of the G-protein coupled receptor (GPCR) family. Recent studies demonstrated that stimulation of GPCR can induce shedding of epidermal growth factor (EGF) ligands via activation of a disintegrin and metalloprotease (ADAM), with subsequent transactivation of the EGF receptor (EGFR). In this study, we investigated mechanisms of cell proliferation and migration stimulated by IL-8 in a human colon carcinoma cell line (Caco2). IL-8 increased DNA synthesis of Caco2 in a dose dependent manner and this was inhibited by ADAM, EGFR kinase, and MEK inhibitors. IL-8 transiently induced EGFR tyrosine phosphorylation after 5-90 min and this was completely inhibited by ADAM inhibitor. Neutralizing antibody against HB-EGF as a key ligand for EGFR also blocked transactivation of EGFR and cell proliferation by IL-8. Since IL-8-induced cell migration was further suppressed by the ADAM inhibitor and the HB-EGF neutralizing antibody, our data indicate that IL-8 induces cell proliferation and migration by an ADAM-dependent pathway, and that HB-EGF plays an important role as the major ligand for this pathway.  相似文献   

13.
Activation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.Subject terms: Targeted therapies, Non-small-cell lung cancer  相似文献   

14.
15.
The incidence and mortality of lung cancer ranked the first among all types of cancer in China, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer accounting for 85% of all lung cancers. Given that the survival rate of patients with advanced NSCLC is still poor nowadays, identification of novel therapeutic targets and the development of effective therapies are desired for the treatment of NSCLC in clinics. In this study, we reported the upregulation of ornithine aminotransferase (OAT) in NSCLC cells and clinical tumor samples as well as its association with the advanced TNM stage, metastasis, and poor tumor differentiation of lung cancer. Using different NSCLC cell lines, we demonstrated that OAT promoted the proliferation, invasion, and migration, inhibited the apoptosis, and altered cell cycle of NSCLC cells; besides, the involvement of OAT-miR-21-glycogen synthase kinase-3β signaling in the functional role of OAT in NSCLC was also revealed. Importantly, in the absence of OAT, the growth and metastasis of tumor lung cancer xenograft was significantly suppressed in the nude mice. Based on our findings, OAT may be a potential novel biomarker for the diagnosis and therapeutic outcome monitoring of NSCLC. Inhibition of OAT may also represent a new therapeutic strategy of NSCLC.  相似文献   

16.
Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD‐1) are immune checkpoint proteins expressed in T cells. Although CTLA4 expression was found in multiple tumours including non‐small cell lung cancer (NSCLC) tissues and cells, its function in tumour cells is unknown. Recently, PD‐1 was found to be expressed in melanoma cells and to promote tumorigenesis. We found that CTLA4 was expressed in a subset of NSCLC cell lines and in a subgroup of cancer cells within the lung cancer tissues. We further found that in NSCLC cells, anti‐CTLA4 antibody can induce PD‐L1 expression, which is mediated by CTLA4 and the EGFR pathway involving phosphorylation of MEK and ERK. In CTLA4 knockout cells, EGFR knockout cells or in the presence of an EGFR tyrosine kinase inhibitor, anti‐CTLA4 antibody was not able to induce PD‐L1 expression in NSCLC cells. Moreover, anti‐CTLA4 antibody promoted NSCLC cell proliferation in vitro and tumour growth in vivo in the absence of adaptive immunity. These results suggest that tumour cell‐intrinsic CTLA4 can regulate PD‐L1 expression and cell proliferation, and that anti‐CTLA4 antibody, by binding to the tumour cell‐intrinsic CTLA4, may result in the activation of the EGFR pathway in cancer cells.  相似文献   

17.
The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) such as gefitinib and erlotinib have been widely used in treating patients with advanced non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR TKI almost occurs in every patient eventually. To identify its potential mechanism, we established a human NSCLC cell line PC9/AB2 which was 576-fold decrease in gefitinib sensitivity compared with its parental PC9 cell lines. No EGFR-T790M mutation or abnormal expression of c-Met protein was found in PC9/AB2 cells. Over-expression of integrin β1 was found, accompanied with increase of the cells' adhesion and migration. To further confirm the role of integrin β1 in gefitinib acquired resistance, we transferred its siRNA-expressing plasmid and its whole cDNA expressing plasmid into PC9/AB2 and into PC9 cells, respectively. The sensitivity of NSCLC cells to gefitinib was negatively correlated with integrin β1 expression levels. All these data suggest that up-regulation of integrin β1 might be an important factor for gefitinib resistance in NSCLC cell line PC9/AB2.  相似文献   

18.
19.
The application of tyrosine kinase inhibitors (TKIs) to the epidermal growth factor receptor (EGFR) has been proven to be highly effective for non‐small‐cell lung cancer (NSCLC). However, patients often evolve into acquired resistance. The secondary mutations in EGFR account for nearly half of the acquired resistance. While the remaining 50% of patients exhibit tolerance to EGFR‐TKIs with unclear mechanism(s). Cylindromatosis (CYLD), a deubiquitinase, functions as a tumor suppressor to regulate cell apoptosis, proliferation, and immune response, and so on. The role of CYLD in NSCLC EGFR‐TKI resistance remains elusive. Here, we found CYLD was upregulated in PC‐9 cells, whereas downregulated in PC‐9 acquired gefitinib‐resistant (PC‐9/GR) cells in response to the treatment of gefitinib, which is consistent with the results in the Gene Expression Omnibus database. Overexpression of CYLD promoted a more apoptotic death ratio in PC‐9/GR cells than that in PC‐9 cells. In addition, silencing the expression of CYLD resulted in an increase of the expression level of interleukin‐6, transforming growth factor‐β and tumor necrosis factor‐α, which may contribute to acquired resistance of PC‐9 cells to gefitinib. Taken together, our data in vitro demonstrate that PC‐9/GR cells downregulated CYLD expression, enhanced subsequent CYLD‐dependent antiapoptotic capacity and inflammatory response, which may provide a possible target for acquired gefitinib‐resistant treatment in NSCLC.  相似文献   

20.
Estrogen receptor signaling pathways in human non-small cell lung cancer   总被引:6,自引:0,他引:6  
Lung cancer is the most common cause of cancer mortality in male and female patients in the US. The etiology of non-small cell lung cancer (NSCLC) is not fully defined, but new data suggest that estrogens and growth factors promote tumor progression. In this work, we confirm that estrogen receptors (ER), both ERalpha and ERbeta, occur in significant proportions of archival NSCLC specimens from the clinic, with receptor expression in tumor cell nuclei and in extranuclear sites. Further, ERalpha in tumor nuclei was present in activated forms as assessed by detection of ER phosphorylation at serines-118 and -167, residues commonly modulated by growth factor receptor as well as steroid signaling. In experiments using small interfering RNA (siRNA) constructs, we find that suppressing expression of either ERalpha or ERbeta elicits a significant reduction in NSCLC cell proliferation in vitro. Estrogen signaling in NSCLC cells may also include steroid receptor coactivators (SRC), as SRC-3 and MNAR/PELP1 are both expressed in several lung cell lines, and both EGF and estradiol elicit serine phosphorylation of SRC-3 in vitro. EGFR and ER also cooperate in promoting early activation of p42/p44 MAP kinase in NSCLC cells. To assess new strategies to block NSCLC growth, we used Faslodex alone and with erlotinib, an EGFR kinase inhibitor. The drug tandem elicited enhanced blockade of the growth of NSCLC xenografts in vivo, and antitumor activity exceeded that of either agent given alone. The potential for use of antiestrogens alone and with growth factor receptor antagonists is now being pursued further in clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号