首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CHIP28 is a 28-kD hydrophobic integral membrane protein that functions as a water channel in erythrocytes and renal tubule epithelial cell membranes. We examined the transmembrane topology of CHIP28 in the ER by engineering a reporter of translocation (derived from bovine prolactin) into nine sequential sites in the CHIP28 coding region. The resulting chimeras were expressed in Xenopus oocytes, and the topology of the reporter with respect to the ER membrane was determined by protease sensitivity. We found that although hydropathy analysis predicted up to seven potential transmembrane regions, CHIP28 spanned the membrane only four times. Two putative transmembrane helices, residues 52-68 and 143-157, reside on the lumenal and cytosolic surfaces of the ER membrane, respectively. Topology derived from these chimeric proteins was supported by cell-free translation of five truncated CHIP28 cDNAs, by N-linked glycosylation at an engineered consensus site in native CHIP28 (residue His69), and by epitope tagging of the CHIP28 amino terminus. Defined protein chimeras were used to identify internal sequences that direct events of CHIP28 topogenesis. A signal sequence located within the first 52 residues initiated nascent chain translocation into the ER lumen. A stop transfer sequence located in the hydrophobic region from residues 90-120 terminated ongoing translocation. A second internal signal sequence, residues 155-186, reinitiated translocation of a COOH-terminal domain (residues 186-210) into the ER lumen. Integration of the nascent chain into the ER membrane occurred after synthesis of 107 residues and required the presence of two membrane-spanning regions. From this data, we propose a structural model for CHIP28 at the ER membrane in which four membrane- spanning alpha-helices form a central aqueous channel through the lipid bilayer and create a pathway for water transport.  相似文献   

2.
MOTIVATION: The completion of the Arabidopsis genome offers the first opportunity to analyze all of the membrane protein sequences of a plant. The majority of integral membrane proteins including transporters, channels, and pumps contain hydrophobic alpha-helices and can be selected based on TransMembrane Spanning (TMS) domain prediction. By clustering the predicted membrane proteins based on sequence, it is possible to sort the membrane proteins into families of known function, based on experimental evidence or homology, or unknown function. This provides a way to identify target sequences for future functional analysis. RESULTS: An automated approach was used to select potential membrane protein sequences from the set of all predicted proteins and cluster the sequences into related families. The recently completed sequence of Arabidopsis thaliana, a model plant, was analyzed. Of the 25,470 predicted protein sequences 4589 (18%) were identified as containing two or more membrane spanning domains. The membrane protein sequences clustered into 628 distinct families containing 3208 sequences. Of these, 211 families (1764 sequences) either contained proteins of known function or showed homology to proteins of known function in other species. However, 417 families (1444 sequences) contained only sequences with no known function and no homology to proteins of known function. In addition, 1381 sequences did not cluster with any family and no function could be assigned to 1337 of these.  相似文献   

3.
We propose a new method for classifying and identifying transmembrane (TM) protein functions in proteome-scale by applying a single-linkage clustering method based on TM topology similarity, which is calculated simply from comparing the lengths of loop regions. In this study, we focused on 87 prokaryotic TM proteomes consisting of 31 proteobacteria, 22 gram-positive bacteria, 19 other bacteria, and 15 archaea. Prior to performing the clustering, we first categorized individual TM protein sequences as "known," "putative" (similar to "known" sequences), or "unknown" by using the homology search and the sequence similarity comparison against SWISS-PROT to assess the current status of the functional annotation of the TM proteomes based on sequence similarity only. More than three-quarters, that is, 75.7% of the TM protein sequences are functionally "unknown," with only 3.8% and 20.5% of them being classified as "known" and "putative," respectively. Using our clustering approach based on TM topology similarity, we succeeded in increasing the rate of TM protein sequences functionally classified and identified from 24.3% to 60.9%. Obtained clusters correspond well to functional superfamilies or families, and the functional classification and identification are successfully achieved by this approach. For example, in an obtained cluster of TM proteins with six TM segments, 109 sequences out of 119 sequences annotated as "ATP-binding cassette transporter" are properly included and 122 "unknown" sequences are also contained.  相似文献   

4.
在基因组数据中,有20%~30%的产物被预测为跨膜蛋白,本文通过对膜蛋白拓扑结构预测方法进行分析,并评价其结果,为选择更合适的拓扑结构预测方法预测膜蛋白结构。通过对目前已有的拓扑结构预测方法的评价分析,可以为我们在实际工作中提供重要的参考。比如对一个未知拓扑结构的跨膜蛋白序列,我们可以先进行是否含有信号肽的预测,参考Polyphobius和SignalP两种方法,若两种方法预测结果不一致,综合上述对两种方法的评价,Polyphobius预测的综合能力较好,可取其预测的结果,一旦确定含有信号肽,则N端必然位于膜外侧。然后结合序列的长度,判断蛋白是单跨膜还是多重跨膜,即可参照上述评价结果,选择合适的拓扑结构预测方法进行预测。  相似文献   

5.
The 2-hydroxycarboxylate transporter (2HCT) family of secondary transporters belongs to a much larger structural class of secondary transporters termed ST3 which contains about 2000 transporters in 32 families. The transporters of the 2HCT family are among the best studied in the class. Here we detect weak sequence similarity between the N- and C-terminal halves of the proteins using a sensitive method which uses a database containing the N- and C-terminal halves of all the sequences in ST3 and involves blast searches of each sequence in the database against the whole database. Unrelated families of secondary transporters of the same length and composition were used as controls. The sequence similarity involved major parts of the N- and C-terminal halves and not just a small stretch. The membrane topology of the homologous N- and C-terminal domains was deduced from the experimentally determined topology of the members of the 2HCT family. The domains consist of five transmembrane segments each and have opposite orientations in the membrane. The N terminus of the N-terminal domain is extracellular, while the N terminus of the C-terminal domain is cytoplasmic. The loops between the fourth and fifth transmembrane segment in each domain are well conserved throughout the class and contain a high fraction of residues with small side chains, Gly, Ala and Ser. Experimental work on the citrate transporter CitS in the 2HCT family indicates that the loops are re-entrant or pore loops. The re-entrant loops in the N- and C-terminal domains enter the membrane from opposite sides (trans-re-entrant loops). The combination of inverted membrane topology and trans-re-entrant loops represents a new fold for secondary transporters and resembles the structure of aquaporins and models proposed for Na+/Ca2+ exchangers.  相似文献   

6.
Numerous sequences of the cytochrome bd quinol oxidase (cytochrome bd) have recently become available for analysis. The analysis has revealed a small number of conserved residues, a new topology for subunit I and a phylogenetic tree involving extensive horizontal gene transfer. There are 20 conserved residues in subunit I and two in subunit II. Algorithms utilizing multiple sequence alignments predicted a revised topology for cytochrome bd, adding two transmembrane helices to subunit I to the seven that were previously indicated by the analysis of the sequence of the oxidase from E. coli. This revised topology has the effect of relocating the N-terminus and C-terminus to the periplasmic and cytoplasmic sides of the membrane, respectively. The new topology repositions I-H19, the putative ligand for heme b595, close to the periplasmic edge of the membrane, which suggests that the heme b595/heme d active site of the oxidase is located near the outer (periplasmic) surface of the membrane. The most highly conserved region of the sequence of subunit I contains the sequence GRQPW and is located in a predicted periplasmic loop connecting the eighth and ninth transmembrane helices. The potential importance of this region of the protein was previously unsuspected, and it may participate in the binding of either quinol or heme d. There are two very highly conserved glutamates in subunit I, E99 and E107, within the third transmembrane helix (E. coli cytochrome bd-I numbering). It is speculated that these glutamates may be part of a proton channel leading from the cytoplasmic side of the membrane to the heme d oxygen-reactive site, now placed near the periplasmic surface. The revised topology and newly revealed conserved residues provide a clear basis for further experimental tests of these hypotheses. Phylogenetic analysis of the new sequences of cytochrome bd reveals considerable deviation from the 16sRNA tree, suggesting that a large amount of horizontal gene transfer has occurred in the evolution of cytochrome bd.  相似文献   

7.
Despite significant methodological advances in protein structure determination high-resolution structures of membrane proteins are still rare, leaving sequence-based predictions as the only option for exploring the structural variability of membrane proteins at large scale. Here, a new structural classification approach for α-helical membrane proteins is introduced based on the similarity of predicted helix interaction patterns. Its application to proteins with known 3D structure showed that it is able to reliably detect structurally similar proteins even in the absence of any sequence similarity, reproducing the SCOP and CATH classifications with a sensitivity of 65% at a specificity of 90%. We applied the new approach to enhance our comprehensive structural classification of α-helical membrane proteins (CAMPS), which is primarily based on sequence and topology similarity, in order to find protein clusters that describe the same fold in the absence of sequence similarity. The total of 151 helix architectures were delineated for proteins with more than four transmembrane segments. Interestingly, we observed that proteins with 8 and more transmembrane helices correspond to fewer different architectures than proteins with up to 7 helices, suggesting that in large membrane proteins the evolutionary tendency to re-use already available folds is more pronounced.  相似文献   

8.
Jaffee MB  Imperiali B 《Biochemistry》2011,50(35):7557-7567
The central enzyme in N-linked glycosylation is the oligosaccharyl transferase (OTase), which catalyzes glycan transfer from a polyprenyldiphosphate-linked carrier to select asparagines within acceptor proteins. PglB from Campylobacter jejuni is a single-subunit OTase with homology to the Stt3 subunit of the complex multimeric yeast OTase. Sequence identity between PglB and Stt3 is low (17.9%); however, both have a similar predicted architecture and contain the conserved WWDxG motif. To investigate the relationship between PglB and other Stt3 proteins, sequence analysis was performed using 28 homologues from evolutionarily distant organisms. Since detection of small conserved motifs within large membrane-associated proteins is complicated by divergent sequences surrounding the motifs, we developed a program to parse sequences according to predicted topology and then analyze topologically related regions. This approach identified three conserved motifs that served as the basis for subsequent mutagenesis and functional studies. This work reveals that several inter-transmembrane loop regions of PglB/Stt3 contain strictly conserved motifs that are essential for PglB function. The recent publication of a 3.4 ? resolution structure of full-length C. lari OTase provides clear structural evidence that these loops play a fundamental role in catalysis [ Lizak , C. ; ( 2011 ) Nature 474 , 350 - 355 ]. The current study provides biochemical support for the role of the inter-transmembrane domain loops in OTase catalysis and demonstrates the utility of combining topology prediction and sequence analysis for exposing buried pockets of homology in large membrane proteins. The described approach allowed detection of the catalytic motifs prior to availability of structural data and reveals additional catalytically relevant residues that are not predicted by structural data alone.  相似文献   

9.
MOTIVATION: Knowledge of the transmembrane helical topology can help identify binding sites and infer functions for membrane proteins. However, because membrane proteins are hard to solubilize and purify, only a very small amount of membrane proteins have structure and topology experimentally determined. This has motivated various computational methods for predicting the topology of membrane proteins. RESULTS: We present an improved hidden Markov model, TMMOD, for the identification and topology prediction of transmembrane proteins. Our model uses TMHMM as a prototype, but differs from TMHMM by the architecture of the submodels for loops on both sides of the membrane and also by the model training procedure. In cross-validation experiments using a set of 83 transmembrane proteins with known topology, TMMOD outperformed TMHMM and other existing methods, with an accuracy of 89% for both topology and locations. In another experiment using a separate set of 160 transmembrane proteins, TMMOD had 84% for topology and 89% for locations. When utilized for identifying transmembrane proteins from non-transmembrane proteins, particularly signal peptides, TMMOD has consistently fewer false positives than TMHMM does. Application of TMMOD to a collection of complete genomes shows that the number of predicted membrane proteins accounts for approximately 20-30% of all genes in those genomes, and that the topology where both the N- and C-termini are in the cytoplasm is dominant in these organisms except for Caenorhabditis elegans. AVAILABILITY: http://liao.cis.udel.edu/website/servers/TMMOD/  相似文献   

10.
A non-hydrophobic sequence that contributes to the biogenesis of a transmembrane protein is termed a stop-transfer effector (STE). To examine the mechanism of STE-mediated stop-transfer, a series of fusion proteins were constructed containing variants of a putative STE from murine IgM fused to an otherwise translocated hydrophobic sequence. Unexpectedly, the fraction of molecules adopting transmembrane topology was insensitive to many amino acid substitutions within the STE sequence but varied directly with the number of negative charges. Furthermore, when present at the amino terminus of a reporter, mutants were observed that adopted type I (amino terminus lumenal) and type II (amino terminus cytoplasmic) transmembrane topologies, demonstrating that the STE sequence can be located at either side of the endoplasmic reticulum membrane. Our results suggest that recognition of a broad structural feature formed primarily by negatively charged residues within the STE halts translocation and triggers membrane integration, even when the negative charges end up on the cytoplasmic side of the membrane. Since functional STE sequences photocross-link to two membrane proteins not previously identified at the translocon, these unique proteins are presumably involved in recognizing STE sequences and/or facilitating STE function.  相似文献   

11.
Multiple sequence alignments become biologically meaningful only if conserved and functionally important residues and secondary structural elements preserved can be identified at equivalent positions. This is particularly important for transmembrane proteins like G-protein coupled receptors (GPCRs) with seven transmembrane helices. TM-MOTIF is a software package and an effective alignment viewer to identify and display conserved motifs and amino acid substitutions (AAS) at each position of the aligned set of homologous sequences of GPCRs. The key feature of the package is to display the predicted membrane topology for seven transmembrane helices in seven colours (VIBGYOR colouring scheme) and to map the identified motifs on its respective helices /loop regions. It is an interactive package which provides options to the user to submit query or pre-aligned set of GPCR sequences to align with a reference sequence, like rhodopsin, whose structure has been solved experimentally. It also provides the possibility to identify the nearest homologue from the available inbuilt GPCR or Olfactory Receptor cluster dataset whose association is already known for its receptor type. AVAILABILITY: The database is available for free at mini@ncbs.res.in.  相似文献   

12.
Transmembrane beta-barrel (TMB) proteins are embedded in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The cellular location and functional diversity of beta-barrel outer membrane proteins (omps) makes them an important protein class. At the present time, very few nonhomologous TMB structures have been determined by X-ray diffraction because of the experimental difficulty encountered in crystallizing transmembrane proteins. A novel method using pairwise interstrand residue statistical potentials derived from globular (nonouter membrane) proteins is introduced to predict the supersecondary structure of transmembrane beta-barrel proteins. The algorithm transFold employs a generalized hidden Markov model (i.e., multitape S-attribute grammar) to describe potential beta-barrel supersecondary structures and then computes by dynamic programming the minimum free energy beta-barrel structure. Hence, the approach can be viewed as a "wrapping" component that may capture folding processes with an initiation stage followed by progressive interaction of the sequence with the already-formed motifs. This approach differs significantly from others, which use traditional machine learning to solve this problem, because it does not require a training phase on known TMB structures and is the first to explicitly capture and predict long-range interactions. TransFold outperforms previous programs for predicting TMBs on smaller (相似文献   

13.
The integral membrane sialoglycoprotein PrPSc is the only identifiable component of the scrapie prion. Scrapie in animals and Creutzfeldt-Jakob disease in humans are transmissible, degenerative neurological diseases caused by prions. Standard predictive strategies have been used to analyze the secondary structure of the prion protein in conjunction with Fourier analysis of the primary sequence hydrophobicities to detect potential amphipathic regions. Several hydrophobic segments, a proline- and glycine-rich repeat region and putative glycosylation sites are incorporated into a model for the integral membrane topology of PrP. The complete amino acid sequences of the hamster, human and mouse prion proteins are compared and the effects of residue substitutions upon the predicted conformation of the polypeptide chain are discussed. While PrP has a unique primary structure, its predicted secondary structure shares some interesting features with the serum amyloid A proteins. These proteins undergo a post-translational modification to yield amyloid A, molecules that share with PrP the ability to polymerize into birefringent filaments. Our analyses may explain some experimental observations on PrP, and suggest further studies on the properties of the scrapie and cellular PrP isoforms.  相似文献   

14.
Three cDNA clones that hybridize to a partial rice cDNA that show similarity to bovine mitochondrial 2-oxoglutarate/malate translocator were isolated from leaves of Panicum miliaceum L. (proso millet), an NAD-malic enzyme-type C4 plant. The nucleotide sequences of the clones resemble each other, and some of the isolated cDNAs contained extra sequences that seemed to be introns. The predicted proteins encoded by the cDNAs have 302 amino acids and molecular weights of 32211 and 32150. The hydrophobic profile of the amino acid sequence predicted the existence of six transmembrane -helices that is a common property of members in the mitochondrial transporter family. The predicted amino acid sequence showed the highest similarity with that of the 2-oxoglutarate/malate translocator from mammalian mitochondria. An expression plasmid containing the coding region of the cDNAs was used to over-express recombinant protein with a C-terminal histidine tag Escherichia coli, which was affinity-purified. The antibody against the recombinant protein cross-reacted with proteins of 31–32 kDa in the membrane fraction from P. miliaceum mitochondria, but not with the chloroplast fraction. The recombinant protein reconstituted in liposomes efficiently transported malate, citrate, and 2-oxoglutarate.  相似文献   

15.

Background

Sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches composed of non-polar residues. Simple, quantitative criteria are desirable for identifying transmembrane helices (TMs) that must be included into or should be excluded from start sequence segments in similarity searches aimed at finding distant homologues.

Results

We found that there are two types of TMs in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intra-membrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information.

Conclusion

For extending the homology concept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs (and a sufficient criterion for complex TMs) in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments.

Reviewers

This article was reviewed by Shamil Sunyaev, L. Aravind and Arcady Mushegian.  相似文献   

16.
In contrast to typical membrane proteins that span the lipid bilayer via transmembrane alpha-helices, bacterial outer membrane proteins adopt a beta-barrel architecture composed of antiparallel transmembrane beta-strands. The topology of outer membrane proteins is difficult to predict accurately using computer algorithms, and topology mapping protocols commonly used for alpha-helical membrane proteins do not work for beta-barrel proteins. We present here the topology of the PapC usher, an outer membrane protein required for assembly and secretion of P pili by the chaperone/usher pathway in uropathogenic Escherichia coli. An initial attempt to map PapC topology by insertion of protease cleavage sites was largely unsuccessful due to lack of cleavage at most sites and the requirement to disrupt the outer membrane to identify periplasmic sites. We therefore adapted a site-directed fluorescence labeling technique to permit topology mapping of outer membrane proteins using small molecule probes in intact bacteria. Using this method, we demonstrated that PapC has the potential to encode up to 32 transmembrane beta-strands. Based on experimental evidence, we propose that the usher consists of an N-terminal beta-barrel domain comprised of 26 beta-strands and that a distinct C-terminal domain is not inserted into the membrane but is located instead within the lumen of the N-terminal beta-barrel similar to the plug domains encoded by the outer membrane iron-siderophore uptake proteins.  相似文献   

17.
Bernsel A  Viklund H  Elofsson A 《Proteins》2008,71(3):1387-1399
Compared with globular proteins, transmembrane proteins are surrounded by a more intricate environment and, consequently, amino acid composition varies between the different compartments. Existing algorithms for homology detection are generally developed with globular proteins in mind and may not be optimal to detect distant homology between transmembrane proteins. Here, we introduce a new profile-profile based alignment method for remote homology detection of transmembrane proteins in a hidden Markov model framework that takes advantage of the sequence constraints placed by the hydrophobic interior of the membrane. We expect that, for distant membrane protein homologs, even if the sequences have diverged too far to be recognized, the hydrophobicity pattern and the transmembrane topology are better conserved. By using this information in parallel with sequence information, we show that both sensitivity and specificity can be substantially improved for remote homology detection in two independent test sets. In addition, we show that alignment quality can be improved for the most distant homologs in a public dataset of membrane protein structures. Applying the method to the Pfam domain database, we are able to suggest new putative evolutionary relationships for a few relatively uncharacterized protein domain families, of which several are confirmed by other methods. The method is called Searcher for Homology Relationships of Integral Membrane Proteins (SHRIMP) and is available for download at http://www.sbc.su.se/shrimp/.  相似文献   

18.
Whole sequence genome analysis is invaluable in providing complete profiles of related proteins and gene families. The genome sequences of the obligate intracellular bacteria Chlamydia trachomatis and Chlamydia pneumoniae both encode proteins with similarity to several 90-kDa Chlamydia psittaci proteins. These proteins are members of a large superfamily, C. trachomatis with 9 members and C. pneumoniae with 21 members. All polymorphic membrane protein (Pmp) are heterogeneous, both in amino acid sequence and in predicted size. Most proteins have apparent signal peptide leader sequences and hence are predicted to be localized to the outer membrane. The unifying features of all proteins are the conserved amino acid motifs GGAI and FXXN repeated in the N-terminal half of each protein. In both genomes, the pmp genes are clustered at various locations on the chromosome. Phylogenetic analysis suggests six related families, each with at least one C. trachomatis and one C. pneumoniae orthologue. One of these families has seen prolific expansion in C. pneumoniae, resulting in 13 protein paralogues. The maintenance of orthologues from each species suggests specific functions for the proteins in chlamydial biology.  相似文献   

19.
NADH:quinone oxidoreductase, or Complex I, is a multi-subunit membrane-bound enzyme in the respiratory chain of many pro- and eukaryotes. The enzyme catalyzes the oxidation of NADH and donates electrons to the quinone pool, coupled to proton translocation across the membrane, but the mechanism of energy transduction is not understood. In bacteria the enzyme consists of 14 subunits, seven membrane spanning and seven protruding from the membrane. The hydrophobic NuoH (NQO8, ND1, NAD1, NdhA) subunit is seemingly involved in quinone binding. A homologous, structurally and most likely functionally similar subunit is also found in F(420)H2 oxidoreductases and in complex membrane-bound hydrogenases. We have made theoretical analyses of NuoH and NuoH-like polypeptides and experimentally analyzed the transmembrane topology of the NuoH subunit from Rhodobacter capsulatus by constructing and analyzing alkaline phosphatase fusion proteins. This demonstrated that the NuoH polypeptide has eight transmembrane segments, and four highly conserved hydrophilic sequence motifs facing the inside, bacterial cytoplasm. The N-terminal and C-terminal ends are located on the outside of the membrane. A topology model of NuoH based on these results is presented, and implications from the model are discussed.  相似文献   

20.
The New York Consortium on Membrane Protein Structure (NYCOMPS), a part of the Protein Structure Initiative (PSI) in the USA, has as its mission to establish a high-throughput pipeline for determination of novel integral membrane protein structures. Here we describe our current target selection protocol, which applies structural genomics approaches informed by the collective experience of our team of investigators. We first extract all annotated proteins from our reagent genomes, i.e. the 96 fully sequenced prokaryotic genomes from which we clone DNA. We filter this initial pool of sequences and obtain a list of valid targets. NYCOMPS defines valid targets as those that, among other features, have at least two predicted transmembrane helices, no predicted long disordered regions and, except for community nominated targets, no significant sequence similarity in the predicted transmembrane region to any known protein structure. Proteins that feed our experimental pipeline are selected by defining a protein seed and searching the set of all valid targets for proteins that are likely to have a transmembrane region structurally similar to that of the seed. We require sequence similarity aligning at least half of the predicted transmembrane region of seed and target. Seeds are selected according to their feasibility and/or biological interest, and they include both centrally selected targets and community nominated targets. As of December 2008, over 6,000 targets have been selected and are currently being processed by the experimental pipeline. We discuss how our target list may impact structural coverage of the membrane protein space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号