首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim  To test the influence of various species traits, elevation and phylogeographical history on the genetic diversity of high-mountain plants in the Alps and Carpathians.
Location  The regular sampling grid comprised the whole range of the European Alps and the Carpathians.
Methods  Twenty-two high-mountain plant species were exhaustively sampled and their genetic diversity was assessed with amplified fragment length polymorphisms (AFLPs). ANOVAs were used to check for relationships between species traits and species genetic diversity, and to test whether genetic diversity was influenced by altitude and phylogeographical history (i.e. Alps versus Carpathians).
Results  In both mountain systems, species dispersed and pollinated by wind showed higher genetic diversity than species with self or insect pollination, and with animal- or gravity-dispersed seeds. Only in the Alps did altitudinal range size affect species genetic diversity significantly: species with narrow altitudinal ranges in the highest vegetation belts had significantly higher genetic diversity than those expanding over wide altitudinal ranges. Genetic diversity was species specific and significantly higher in the Alps than in the Carpathians, but it was not influenced by elevation.
Main conclusions  Wind pollination and wind dispersal seem to foster high genetic diversity. However, species traits are often associated and their effects on genetic diversity cannot be clearly disentangled. As genetic diversity is species specific, comparisons across species need to be interpreted with care. Genetic diversity was generally lower in the Carpathians than in the Alps, due to higher topographical isolation of alpine habitats in the Carpathians and this mountain massif's divergent phylogeographical history. Elevation did not influence genetic diversity, challenging the long-held view of decreasing genetic diversity with increasing elevation in mountain plants.  相似文献   

2.
In hilly boreal landscapes topography governs groundwater flow which strongly influences soil development, and thus vegetation composition. Soil pH is known to correlate well with plant species density and composition, but in boreal forests this relationship has been little studied. Previously, we successfully used a topography-based hydrological index, the topographical wetness index (TWI), as an approximation of the variation in groundwater flow to predict local plant species density in a boreal forest landscape. Data on species indicator values demonstrated that soil pH can be an important soil variable linking groundwater flow and plant species density. In the present paper we explore this link by relating measured soil pH to species numbers of vascular plants and TWI in 200-m2 plots within two boreal forest landscapes, differing in average soil pH. The two landscapes showed almost identical relationships between plant species number and soil pH, implying that this relationship is robust. The landscapes also had similar relationships between soil pH and TWI as well as between plant species number and TWI except at high TWI values, which indicate groundwater discharge areas. In these areas soil pH and plant species numbers were higher in the high-pH landscape at any given TWI value. We conclude that for predictive mapping of the species density of vascular plants in boreal forests, soil pH is a major factor. However, TWI as a measure of groundwater flow is a practical alternative predictor.  相似文献   

3.
Elucidating how evolutionary and ecological factors drive the assemblage of communities in biodiversity hotspots remains an important challenge. This currently impedes our ability to predict the responses of communities to the ongoing global changes in these major world’s biodiversity reservoirs. Here, we focus on the Sierra Nevada mountain range, a core region of the Baetic-Rifan biodiversity hotspot in the western Mediterranean, and explore the relative importance of soil properties and elevation in shaping phylogenetic and functional diversity of shrub communities. We recorded the total number of each species in community transects across elevation gradients and contrasting soil conditions, and measured some ecologically relevant functional traits (specific leaf area, leaf carbon:nitrogen ratio, plant height and blooming duration). Phylogenetic distances among species were inferred from a genus-level time-calibrated molecular phylogeny. Elevation was the main factor predicting phylogenetic and functional alpha diversity of plant communities. Species in high-elevation communities were phylogenetically distant but functionally similar, being relatively smaller and having relatively short blooming durations, whilst species in low-elevation communities showed the opposite pattern. Beta diversity in SLA and leaf C:N ratio based on species incidences were positively correlated with a soil pH and micronutrient gradient. Specifically, communities that develop on soils of high pH and low micronutrient concentrations showed low SLA values and high leaf C:N ratios, whilst communities on soils of lower pH and high micronutrient concentrations showed the opposite pattern. We conclude that soil properties and elevation simultaneously shape the structure of Mediterranean shrub communities by differentially acting on the different dimensions of the species niches. Elevation seems to filter plant height and phenology-related traits whereas nutrient-related functional traits are more related to soil properties. Our study illustrates the primary role of environmental heterogeneity for the maintenance of diversity in Mediterranean mountain ecosystems.  相似文献   

4.
马紫荆  张云玲  刘彬 《广西植物》2022,42(7):1116-1125
为探讨天山中段南坡巴伦台植物群落物种多样性随海拔梯度的分布特征及其与土壤环境因子的关系,该研究采用野外调查的方法,在和静县巴伦台地区海拔范围内设置34个样地进行了植物多样性和土壤因子的调查及室内指标的统计分析。结果表明:(1)研究区共调查到30科75属134种植物,草本层为主要优势层。不同海拔高度上土壤理化指标具有异质性,土壤含水量、全盐、有机质、全氮、全钾、有效氮和有效钾差异性显著(P<0.05),其中除全钾以外,其他土壤因子的含量均表现为中海拔大于低、高海拔区域。随海拔的升高,植物群落在低、高海拔段Pielou均匀度指数较高; 灌木层物种Patrick丰富度指数较低; 草本层物种Shannon-Wiener指数、Simpson指数随海拔升高先增加后减小。(2)RDA分析表明,影响植物群落物种多样性的主要环境因子是海拔、土壤含水量、全盐、有机质、全氮和有效氮。海拔作为主导因子,与草本层各物种多样性指数呈正相关,与灌木层各物种多样性指数呈负相关关系; 全盐是抑制植物群落总体物种Simpson指数的主要土壤因子; 氮元素一定程度上限制灌木、半灌木物种的生长。该研究结果表明土壤因子对不同生活型物种多样性的形成具有一定的筛选作用及不同物种对环境变化的适应策略不同。  相似文献   

5.
基于中国科学院亚热带农业生态研究所在木论国家级自然保护区借鉴CTFS标准建立的2hm2喀斯特常绿落叶阔叶混交林动态监测样地(50个20m×20m样方),选取代表木本植物群落、土壤性质和地形因子的22个指标,对其总体特征及三者之间的相互关系进行了经典统计分析、主成分分析、聚类分析与典型相关分析。结果表明,喀斯特常绿落叶阔叶混交林生态系统的景观异质性强、土壤养分含量高、物种丰富且结构合理,除海拔、Simpson指数、均匀度、pH之外的18个指标均呈中、强变异;综合土壤因子是影响生态系统的主要因子群,其次是综合群落多样性因子和结构性因子,综合地形因子的作用相对较弱;4种不同类型真实而直观地表征了群落类型、土壤肥力和地形的差异,相对优化的第3种类型主要分布在海拔较高、裸石率较大、坡度较高的阴坡中上部;植被、土壤、地形两两之间均存在着较高的相关性,植被与土壤因子之间,有机质、氮、磷起较大的作用,主要影响群落结构,植被和地形之间,坡向和岩石裸露率影响群落结构和物种丰富度,而坡向和坡位直接导致了土壤有机质、全氮、有效磷和pH的变化。  相似文献   

6.
Topography and soil factors are known to play crucial roles in the species composition of plant communities in subtropical evergreen-deciduous broadleaved mixed forests. In this study, we used a systematic quantitative approach to classify plant community types in the subtropical forests of Hubei Province (central China), and then quantified the relative contribution of drivers responsible for variation in species composition and diversity. We classified the subtropical forests in the study area into 12 community types. Of these, species diversity indices of three communities were significantly higher than those of others. In each community type, species richness, abundance, basal area and importance values of evergreen and deciduous species were different. In most community types, deciduous species richness was higher than that of evergreen species. Linear regression analysis showed that the dominant factors that affect species composition in each community type are elevation, slope, aspect, soil nitrogen content, and soil phosphorus content. Furthermore, structural equation modeling analysis showed that the majority of variance in species composition of plant communities can be explained by elevation, aspect, soil water content, litterfall, total nitrogen, and total phosphorus. Thus, the major factors that affect evergreen and deciduous species distribution across the 12 community types in subtropical evergreen-deciduous broadleaved mixed forests include elevation, slope and aspect, soil total nitrogen content, soil total phosphorus content, soil available nitrogen content and soil available phosphorus content.  相似文献   

7.

Background

The advent of molecular techniques in microbial ecology has aroused interest in gaining an understanding about the spatial distribution of regional pools of soil microbes and the main drivers responsible of these spatial patterns. Here, we assessed the distribution of crenarcheal, bacterial and fungal communities in an alpine landscape displaying high turnover in plant species over short distances. Our aim is to determine the relative contribution of plant species composition, environmental conditions, and geographic isolation on microbial community distribution.

Methodology/Principal Findings

Eleven types of habitats that best represent the landscape heterogeneity were investigated. Crenarchaeal, bacterial and fungal communities were described by means of Single Strand Conformation Polymorphism. Relationships between microbial beta diversity patterns were examined by using Bray-Curtis dissimilarities and Principal Coordinate Analyses. Distance-based redundancy analyses and variation partitioning were used to estimate the relative contributions of different drivers on microbial beta diversity. Microbial communities tended to be habitat-specific and did not display significant spatial autocorrelation. Microbial beta diversity correlated with soil pH. Fungal beta-diversity was mainly related to soil organic matter. Though the effect of plant species composition was significant for all microbial groups, it was much stronger for Fungi. In contrast, geographic distances did not have any effect on microbial beta diversity.

Conclusions/Significance

Microbial communities exhibit non-random spatial patterns of diversity in alpine landscapes. Crenarcheal, bacterial and fungal community turnover is high and associated with plant species composition through different set of soil variables, but is not caused by geographical isolation.  相似文献   

8.
The lowland cultivation of Trifolium alpinum, a clover species found on acid soils in the Alps and suitable for the restoration of erosion areas at high altitudes, failed repeatedly in previous experiments. Three experiments were carried out in a controlled environment to elucidate the reasons for the failure and to develop possible cultivation strategies. In experiment I, T. alpinum was grown in an autochthonous soil from the Alps (high elevation) and in two allochthonous soils, a grassland soil from the Hercynian mountains (medium elevation), and an arable soil (low elevation), in which the seed propagation of T. alpinum had failed previously. The two allochthonous soils had lower contents of soil organic C and ergosterol, an indicator for fungal biomass, than the autochthonous high-elevation soil, but higher levels of exchangeable Ca and extractable P. Plants grown in the allochthonous soils achieved higher biomass and total N amounts per plant than those from the high elevation soil if inoculated with this autochthonous material to establish rhizobial infection. In the allochthonous high elevation soil, the growth of T. alpinum was P-limited as shown in experiment II. In experiment I, plants grown in the low elevation soil had a lower biomass and smaller number of active leaves at 120 days after emergence than those grown on the medium elevation soil. This difference can be explained by strong colonization with the phytophagous nematode Pratylenchus sp., as demonstrated in experiment III by comparing plant growth either in untreated or in autoclaved low-elevation soil. Successful propagation of T. alpinum at low elevation may be achieved through suitable inoculation with autochthonous soil biota, especially Rhizobia, and avoidance of soils infested by Pratylenchus species by choosing sites with acidic soil and ensuring adequate P-availability.  相似文献   

9.
Aim Soil nutrient content plays a key role in plant growth through mineral nutrition and toxicity. Its impact on plant species and community distribution is studied on a large geographical scale through surrogates like topography or geology. We investigated the importance of soil pH and C:N ratio, as direct nutritional gradients, to determine, with climatic factors, the spatial distribution of plant communities over large territories. Location We studied the distribution of six beech habitats of the NATURA 2000 network throughout France (550,000 km2). Methods Models were calibrated with 2108 floristic plots classified in the NATURA 2000 system and including climatic and topographic variables and soil nutritional measurements carried out in a laboratory. Logistic regression was used to model habitat distribution according to environmental variables. Climatic layers, a digital elevation model and maps of soil pH and nitrogen content, created using plant indicator values and large floristic databases, were used to map the sites suitable for beech communities. Distribution models were evaluated with an independent set of 2091 phytosociological plots. Results pH and nitrogen supply were the key distribution drivers for four of the six beech communities on a national scale. Their use in the distribution models distinguished within homogeneous climatic territories a gradient of nutritional conditions from acidic areas, suitable for nutrient‐poor beech communities, to calcareous areas suitable for nutrient‐rich ones. Predicted maps of beech habitats fit the spatial distribution of validation plots. Main conclusions Soil pH and nitrogen supply strongly improve predictions of forest community distribution carried out with climatic variables on a broad geographical scale. They allow delineation of areas with nutritional conditions suitable for each community, as well as the realization of predictive high‐resolution maps over large areas useful for sustainable and conservation management. Nomenclature Tutin & Heywood (2001 ) Flora Europaea. Cambridge University Press, Cambridge.  相似文献   

10.
Abstract. The decline of species‐rich semi‐natural calcareous grasslands is a major conservation problem throughout Europe. Maintenance of traditional animal husbandry is often recommended as an important management strategy. However, results that underpin such management recommendations were derived predominantly from lowland studies and may not be easily applicable to high mountain areas. In this study we analyse the importance of traditional low‐intensity summer farming (cattle grazing) for vascular plant species diversity of a subalpine region in the northern calcareous Alps in Austria by resampling from an existing dataset on its vegetation. Results indicate a significant long term decline of plant species diversity following abandonment at the landscape scale. In contrast, within‐community effects of pasture abandonment on plant species diversity are equivocal and strongly depend on the plant community. We suppose these differences to be due to diet preferences of cattle as well as to the differential importance of competition for structuring the respective communities. From our results we infer that the main mechanism by which pasture abandonment affects vascular plant species diversity, at least during the first ca. 100 yr documented here, are not local‐scale competitive exclusion processes within persisting communities. Instead, post‐abandonment successional community displacements that cause a landscape scale homogenization of the vegetation cover seem to be primarily responsible for a decline of species diversity. We conclude, that successful management of vascular plant species diversity in subalpine regions of the Northeastern Calcareous Alps will depend on the maintenance of large scale pasture systems with a spatially variable disturbance regime.  相似文献   

11.
We studied the spatial heterogeneity of tree diversity, and of forest structure and productivity in a highly diverse tropical mountain area in southern Ecuador with the aim of understanding the causes of the large variation in these parameters. Two major environmental gradients, elevation and topography, representing a broad range of climatic and edaphic site conditions, were analyzed. We found the highest species richness of trees in valleys <2100 m. Valleys showed highest values of basal area, leaf area index and tree basal area increment as well. Tree diversity also increased from ridges to valleys, while canopy openness decreased. Significant relationships existed between tree diversity and soil parameters (pH, total contents of Mg, K, Ca, N and P), and between diversity and the spatial variability of pH and Ca and Mg contents suggesting a dependence of tree diversity on both absolute levels and on the small-scale heterogeneity of soil nutrient availability. Tree diversity and basal area increment were positively correlated, partly because both are similarly affected by soil conditions. We conclude that the extraordinarily high tree species richness in the area is primarily caused by three factors: (1) the existence of steep altitudinal and topographic gradients in a rather limited area creating a small-scale mosaic of edaphically different habitats; (2) the intermingling of Amazonian lowland plant species, that reach their upper distribution limits, and of montane forest species; and (3) the geographical position of the study area between the humid eastern Andean slope and the dry interandean forests of South Ecuador.  相似文献   

12.
Soil microbial communities play a key role in ecosystem functioning but still little is known about the processes that determine their turnover (β‐diversity) along ecological gradients. Here, we characterize soil microbial β‐diversity at two spatial scales and at multiple phylogenetic grains to ask how archaeal, bacterial and fungal communities are shaped by abiotic processes and biotic interactions with plants. We characterized microbial and plant communities using DNA metabarcoding of soil samples distributed across and within eighteen plots along an elevation gradient in the French Alps. The recovered taxa were placed onto phylogenies to estimate microbial and plant β‐diversity at different phylogenetic grains (i.e. resolution). We then modeled microbial β‐diversities with respect to plant β‐diversities and environmental dissimilarities across plots (landscape scale) and with respect to plant β‐diversities and spatial distances within plots (plot scale). At the landscape scale, fungal and archaeal β‐diversities were mostly related to plant β‐diversity, while bacterial β‐diversities were mostly related to environmental dissimilarities. At the plot scale, we detected a modest covariation of bacterial and fungal β‐diversities with plant β‐diversity; as well as a distance–decay relationship that suggested the influence of ecological drift on microbial communities. In addition, the covariation between fungal and plant β‐diversity at the plot scale was highest at fine or intermediate phylogenetic grains hinting that biotic interactions between those clades depends on early‐evolved traits. Altogether, we show how multiple ecological processes determine soil microbial community assembly at different spatial scales and how the strength of these processes change among microbial clades. In addition, we emphasized the imprint of microbial and plant evolutionary history on today's microbial community structure.  相似文献   

13.
Abstract

Our study had the objective to examine whether the number of forest vascular plants in a forest-poor region may be indicative of total plant species richness and of the number of threatened plant species. We also related forest plant species richness to geological and soil variables. The analysis was based on a regional flora atlas from the Weser-Elbe region in northwestern Germany including incidence data of species in a total of 1109 grid cells (each ca. 2.8 × 2.8 km2). All taxa were classified either as forest or non-forest species. Total species richness in the grid cells ranged from 65 to 597, with a mean value of 308. The number of forest species varied between 20 and 309 (mean 176). Grid cells with or without particular geological units differed in total and forest species richness, with those containing peatland and marshland being particularly species-poor. Indicator value analysis showed that both total and forest species richness in the grid cells were related to soil acidity and nitrogen in a hump-backed manner, with the highest number of species found at moderately low values for nitrogen and at intermediate values of pH. Forest species richness was highly positively correlated with the number of non-forest species and threatened non-forest species. Indicators for high species richness were primarily those species that are confined to closed semi-natural forests with a varied topography and relatively base- and nutrient-rich soils. Grid cells including historically ancient forest exhibited a higher species richness than grid cells lacking ancient forest, indicating the importance of a long habitat continuity for a high phytodiversity. The “habitat coincidence” of high species richness is best explained by similar responses of forest species and species of other habitats to the main environmental gradients. It is suggested that the regional patterns found for the Weser-Elbe region can be transferred also to other forest-poor regions in Central Europe.  相似文献   

14.
Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.  相似文献   

15.
Saxifraga section Saxifraga subsection Arachnoideae is a lineage of 12 species distributed mainly in the European Alps. It is unusual in terms of ecological diversification by containing both high elevation species from exposed alpine habitats and low elevation species from shady habitats such as overhanging rocks and cave entrances. Our aims are to explore which of these habitat types is ancestral, and to identify the possible drivers of this remarkable ecological diversification. Using a Hybseq DNA-sequencing approach and a complete species sample we reconstructed and dated the phylogeny of subsection Arachnoideae. Using Landolt indicator values, this phylogenetic tree was used for the reconstruction of the evolution of temperature, light and soil pH requirements in this lineage. Diversification of subsection Arachnoideae started in the late Pliocene and continued through the Pleistocene. Both diversification among and within clades was largely allopatric, and species from shady habitats with low light requirements are distributed in well-known refugia. We hypothesize that low light requirements evolved when species persisting in cold-stage refugia were forced into marginal habitats by more competitive warm-stage vegetation. While we do not claim that such competition resulted in speciation, it very likely resulted in adaptive evolution.  相似文献   

16.
Seedlings play an important role in the processes of plant community succession. We compared seedling (dbh < 1 cm) species composition and diversity over a chronosequence (18‐, 30‐, 60‐year‐old second growth and old growth forest) after shifting cultivation in a tropical lowland rain forest area on Hainan Island, China. Seedling diversity reached a maximum in the 60‐year‐old second growth forest, which is consistent with the intermediate disturbance hypothesis. With the progression of secondary succession, canopy openness (CO), soil organic matter, soil phosphorus content, and tree abundance showed a general decreasing trend; soil water content and tree basal area showed a general trend of increase, while soil pH and other nutrients reached maximum values and tree richness reached a minimum value at intermediate stages of succession. Seedling composition and diversity were significantly affected by soil water, pH, soil nutrient content, and biotic factors in the 18‐year‐old second growth forests; by soil pH, soil nutrient content, and biotic factors in the 30‐year‐old second growth forests; by CO, soil nutrient content and tree abundance in the 60‐year‐old second growth forests; and by CO, soil pH, and soil nutrient content in the old growth forests. At earlier stages of succession, the effect of the proportion of old growth forest in the surrounding landscape on seedling diversity was greater than that of land‐use history, but the importance of these drivers was reversed at later stages of succession.  相似文献   

17.
High variability in soil-moisture conditions is typical for semi-arid forest-steppe ecosystems where precipitation varies greatly over time. Plant species that inhabit these environments integrate responses to broadly fluctuating wetness conditions. Indirect assessment of contrasting habitat wetness based on plant indicator values, species frequency, and species coverage was carried out in two sites representing the larch (Larix sibirica) and pine (Pinus sylvestris) forest-steppe communities. For the larch forest-steppe, we found that plant community composition and spatial structure depended strongly on wetness. In addition, we found that the vegetation was clearly differentiated into forest stands and steppe communities, depending on the slope aspect. There was also a strong correlation between dissimilarities of species composition and differences in habitat wetness revealed in the larch forest-steppe. In contrast, soil properties, such as gravel and stone content were found to be a key factor in the spatial distribution of plant species composition in the pine-forest-steppe communities. Indirect assessment of moisture conditions in the forest-steppe habitats, based on the field-layer plant species, was found to be preferable for indicating soil water deficits in the forest. Furthermore, as long-term observational data is often lacking, indirect assessment of the forest-steppe vegetation provides an opportunity to identify vulnerable forests at the marginal distribution. Based on indirect assessments of soil-moisture conditions, and taking into account differences in potential drought resistance between larch and pine forests, we concluded that increasing aridity will cause the replacement of Siberian larch by Scots pine in the South Siberian forest-steppe landscape. Consequently, in the future it is likely that forest-steppe typological diversity will decrease, and the semi-arid landscape may become more monotonous.  相似文献   

18.
Some regions and habitats harbour high numbers of plant species at a fine scale. A remarkable example is the grasslands of the White Carpathian Mountains (Czech Republic), which holds world records in local species richness; however, the causes are still poorly understood. To explore the landscape context of this phenomenon and its relationships to diversity patterns at larger scales, we compared diversity patterns in grasslands and other vegetation types in the White Carpathians with those in nearby regions lacking extremely species-rich grasslands, using data from vegetation plots and flora grid mapping of entire landscapes. Although small-scale species richness of grasslands and ruderal/weed vegetation of the White Carpathians was higher than in the nearby regions, the number of grassland and ruderal/weed species in the regional flora of the White Carpathians was not. Diversity of forests was not higher in this region at any scale. Thus the remarkably high local species richness of the White Carpathian grasslands does not result from a larger grassland species pool in the region, but from the fine-scale co-occurrence of many grassland species in this landscape, which results in the formation of grassland communities that are locally rich but with similar species composition when comparing different sites (i.e. high alpha but low beta diversity). This pattern can be partly attributed to the large total area of these grasslands, which reduces random extinctions of rare species, low geological diversity, which enables many species to occur at many sites across the landscape, and high land-cover diversity, which supports mixing of species from different vegetation types.  相似文献   

19.
In the Southern Alps, the role of landscape context on meadows plant diversity was evaluated using a multi-model information theoretic approach and five competing hypotheses of landscape context factors: habitat quality (H1), matrix quality (H2), habitat change (H3), matrix quality change (H4) and topography-environmental conditions (H5)- measured at three spatial scales (125, 250 and 500 m). Shannon diversity index and species richness represented plant diversity obtained in 34 plots (100 m2 size). Landscape context affected plant diversity measures differently. Matrix quality change at larger scale (500 m) was the most supported hypothesis explaining Shannon diversity index, while species richness responded mostly to topography-environmental conditions in the immediate surroundings (125 m). No effects of present-day habitat and matrix quality (H1 and H2) were found. Matrix quality change affected positively Shannon diversity index through an effect of landscape neighbourhood context on farming management practices. Due to the importance of exposure and inclination of slopes, topography-environmental conditions influenced species richness mostly through energy-driven processes and farming management strategies. In terms of scale, matrix quality change was the strongest hypothesis explaining Shannon diversity index at all scales, while the underlying process affecting species richness changed with scale (H5 or H3). Overall, landscape context explained only 25–28 % of the variation in plant diversity, suggesting that landscape management may support biodiversity conservation when comprised in a global strategy including farming practices. In the study area, change in landscape diversity may be a good indicator for Shannon diversity index and south-eastern facing meadows should be preserved.  相似文献   

20.
结合对新疆伊犁河两岸科古琴山南坡(河谷北坡)和乌孙山北坡(河谷南坡) 94个样地的调查资料, 采用DCCA (detrended canonical correspondence analysis)排序法, 分析了物种多样性指数与环境因子之间的关系, 运用广义可加模型拟合植物群落总体多样性指数对海拔梯度的响应曲线, 探讨了伊犁河谷山地植物群落物种多样性的垂直分布格局。结果表明: 在调查的94个样地中, 共出现259种植物, 其中, 草本植物的种类极其丰富, 多达235种, 木本植物的种类极其有限; 垂直结构完整的植物群落具有较高的多样性指数; 河谷北坡植物群落物种多样性的分布格局受海拔、坡度、坡向以及土壤全氮、全钾、有机质、含水量等环境因子的影响较大, 而在河谷南坡, 物种多样性分布格局主要受坡度、海拔、有效磷含量和土壤含水量等环境因子的影响; 在河谷北坡, 植物群落的Patrick丰富度指数与Shannon-Wiener指数与海拔呈明显的双峰曲线关系, Simpson指数与Pielou均匀度指数呈不对称的单峰格局, 而河谷南坡的物种多样性指数随海拔均呈双峰格局, 尽管Patrick丰富度指数不甚明显。山地植物群落物种多样性的垂直分布格局是由海拔为主的多种环境因子综合作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号