首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)‐induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP‐sensitive K+ (KATP) channel blocker 5‐hydroxydecanoate (5‐HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit‐8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt‐C), Bax, Bcl‐2, cleaved caspase‐3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK‐3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R‐induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt‐C release into cytoplasm, and maintenance of ΔΨm. Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK‐3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5‐HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK‐3β and Akt/mTOR signaling pathways.  相似文献   

2.
D2/D3 dopamine receptors (D2R/D3R) agonists regulate Akt, but their effects display a complex time‐course. In addition, the respective roles of D2R and D3R are not defined and downstream targets remain poorly characterized, especially in vivo. These issues were addressed here for D3R. Systemic administration of quinelorane, a D2R/D3R agonist, transiently increased phosphorylation of Akt and GSK‐3β in rat nucleus accumbens and dorsal striatum with maximal effects 10 min after injection. Akt activation was associated with phosphorylation of several effectors of the mammalian target of rapamycin complex 1 (mTORC1): p70S6 kinase, ribosomal protein‐S6 (Ser240/244), and eukaryotic initiation factor‐4E binding protein‐1. The action of quinelorane was antagonized by a D2/D3R antagonist, raclopride, and the selective D3R antagonist S33084, inactive by themselves. Furthermore, no effect of quinerolane was seen in knock‐out mice lacking D3R. In drd1a‐EGFP transgenic mice, quinelorane activated Akt/GSK‐3β in both neurons expressing and lacking D1 receptor. Thus, the stimulation of D3R transiently activates the Akt/GSK‐3β pathway in the two populations of medium‐size spiny neurons of the nucleus accumbens and dorsal striatum. This effect may contribute to the influence of D3R ligands on reward, cognition, and processes disrupted in schizophrenia, drug abuse, and Parkinson's disease.  相似文献   

3.
4.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

5.
6.
Glycogen synthase kinase‐3 beta (GSK‐3β) dysfunction may play an essential role in the pathogenesis of psychiatric, metabolic, neurodegenerative diseases, in which oxidative stress exists concurrently. Some studies have shown that GSK‐3β activity is up‐regulated under oxidative stress. This study evaluated how oxidative stress regulates GSK‐3β activity in human embryonic kidney 293 (HEK293)/Tau cells treated with hydrogen peroxide (H2O2). Here, we show that H2O2 induced an obvious increase of GSK‐3β activity. Surprisingly, H2O2 dramatically increased phosphorylation of GSK‐3β at Ser9, an inactive form of GSK‐3β,while there were no changes of phosphorylation of GSK‐3β at Tyr216. Moreover, H2O2 led to a transient [Ca2+]i elevation, and simultaneously increased the truncation of GSK‐3β into two fragments of 40 kDa and 30 kDa, whereas inhibition of calpain decreased the truncation and recovered the activity of GSK‐3β. Furthermore, tau was hyperphosphorylated at Ser396, Ser404, and Thr231, three most common GSK‐3β targeted sites after 100 μM H2O2 administration in HEK293/Tau cells, whereas inhibition of calpain blocked the tau phosphorylation. In addition, we found that there were no obvious changes of Cyclin‐dependent kinase 5 (CDK5) expression (responsible for tau phosphorylation) and of p35 cleavage, the regulatory subunit of CDK5 in H2O2‐treated HEK293/Tau cells. In conclusion, Ca2+‐dependent calpain activation leads to GSK‐3β truncation, which counteracts the inhibitory effect of Ser9 phosphorylation, up‐regulates GSK‐3β activity, and phosphorylates tau in H2O2‐treated HEK293/Tau cells.  相似文献   

7.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

8.
Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase that plays a pivotal role in many biological processes. GSK3β catalyzes the transfer of γ‐phosphate of ATP to the unique substrate Ser/Thr residues with the assistance of two natural activating cofactors Mg2+. Interestingly, the biological observation reveals that a non‐native Ca2+ ion can inhibit the GSK3β catalytic activity. Here, the inhibitory mechanism of GSK3β by the displacement of native Mg2+ at site 1 by Ca2+ was investigated by means of 80 ns comparative molecular dynamics (MD) simulations of the GSK3β···Mg2+‐2/ATP/ Mg2+‐1 and GSK3β···Mg2+‐2/ATP/Ca2+‐1 systems. MD simulation results revealed that using the AMBER point charge model force field for Mg2+ was more appropriate in the reproduction of the active site architectural characteristics of GSK3β than using the magnesium‐cationic dummy atom model force field. Compared with the native Mg2+ bound system, the misalignment of the critical triphosphate moiety of ATP, the erroneous coordination environments around the Mg2+ ion at site 2, and the rupture of the key hydrogen bond between the invariant Lys85 and the ATP Oβ2 atom in the Ca2+ substituted system were observed in the MD simulation due to the Ca2+ ion in active site in order to achieve its preferred sevenfold coordination geometry, which adequately abolish the enzymatic activity. The obtained results are valuable in understanding the possible mechanism by why Ca2+ inhibits the GSK3β activity and also provide insights into the mechanism of Ca2+ inhibition in other structurally related protein kinases. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Sepsis‐induced cardiac dysfunction represents a main cause of death in intensive care units. Previous studies have indicated that GSK‐3β is involved in the modulation of sepsis. However, the signalling details of GSK‐3β regulation in endotoxin lipopolysaccharide (LPS)‐induced septic myocardial dysfunction are still unclear. Here, based on the rat septic myocardial injury model, we found that LPS could induce GSK‐3β phosphorylation at its active site (Y216) and up‐regulate FOXO3A level in primary cardiomyocytes. The FOXO3A expression was significantly reduced by GSK‐3β inhibitors and further reversed through β‐catenin knock‐down. This pharmacological inhibition of GSK‐3β attenuated the LPS‐induced cell injury via mediating β‐catenin signalling, which could be abolished by FOXO3A activation. In vivo, GSK‐3β suppression consistently improved cardiac function and relieved heart injury induced by LPS. In addition, the increase in inflammatory cytokines in LPS‐induced model was also blocked by inhibition of GSK‐3β, which curbed both ERK and NF‐κB pathways, and suppressed cardiomyocyte apoptosis via activating the AMP‐activated protein kinase (AMPK). Our results demonstrate that GSK‐3β inhibition attenuates myocardial injury induced by endotoxin that mediates the activation of FOXO3A, which suggests a potential target for the therapy of septic cardiac dysfunction.  相似文献   

10.
11.
Peroxiredoxin‐5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca2+ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca2+ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH‐SY5Y cells to dissect the role of this enzyme in 1‐methyl‐4‐phenylpyridinium (MPP)+‐induced cell death. Our data show that mitochondria‐dependent apoptosis triggered by MPP+, assessed by the measurement of caspase‐9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca2+, Ca2+‐dependent activation of calpains and Bax cleavage. Finally, using Ca2+ channel inhibitors (Nimodipine, Dantrolene and 2‐APB), we show that Ca2+ release arises essentially from ER stores through 1,4,5‐inositol‐trisphosphate receptors (IP3R). Altogether, our results suggest that the MPP+ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca2+ transporters via a crosstalk between mitochondria and ER.  相似文献   

12.
Astaxanthin (ATX), which is the most abundant flavonoid in propolis, has previously shown neuroprotective properties against cerebral ischaemia‐induced apoptosis. However, the mechanisms by which ATX mediates its therapeutic effects are unclear. At present, we explored the underlying mechanisms involved in the protective effects of ATX via the phosphoinositide 3‐kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling pathway in SH‐SY5Y cells. The PI3K/Akt inhibitor LY294002 and GSK3β inhibitor LiCl were employed in this study. Pre‐treatment with ATX for 24 hours significantly decreased the oxygen and glucose deprivation (OGD)‐induced viability loss, reduced the proportion of apoptosis and regulated OGD‐mediated reactive oxygen species (ROS) production. Furthermore, ATX suppressed OGD‐caused mitochondrial membrane potential and decomposition of caspase‐3 to cleaved caspase‐3, and heightened the B‐cell lymphoma 2 (Bcl‐2)/Bax ratio. PI3K/Akt/GSK3β/Nrf2 signalling pathway activation in SH‐SY5Y cells was verified by Western blot. ATX and LiCl treatment raised the protein levels of p‐Akt, p‐GSK3β, nucleus Nrf2 and haeme oxygenase 1 (HO‐1). However, these protein expression levels decreased by treatment of LY294002. The above in vitro data indicate that ATX can confer neuroprotection against OGD‐induced apoptosis via the PI3K/Akt/GSK3β/Nrf2 signalling pathway.  相似文献   

13.
In clinic, we examined the expression of protein kinase C (PKC)‐α and Dicer in the samples of bladder cancer patients, and found that the two proteins have a line correlation. Our study confirmed this correlation existing by clearing the decreasing expression of Dicer after the PKC‐α knockdown. Treatment of bladder cancer cell lines (T24, 5637) with the PKC‐α or Dicer knockdown and the PKC inhibitors (Calphostin C and Gö 6976) can promote the apoptosis. Inhibition of PKC can increase the activities of caspase‐3 and PARP, however, decrease the expression of Dicer. And knockdown of the PKC‐α or Dicer can also activate the caspase‐3 or the PARP. Considering the reduction of PKC‐α can induce the Dicer down‐regulation, we make the conclusion that the reduction of PKC‐α can promote the apoptosis via the down‐regulation of Dicer in bladder cancer.  相似文献   

14.
This report describes that protein kinase C delta (PKCδ) overexpression prevents TRAIL‐induced apoptosis in breast tumor cells; however, the regulatory mechanism(s) involved in this phenomenon is(are) incompletely understood. In this study, we have shown that TRAIL‐induced apoptosis was significantly inhibited in PKCδ overexpressing MCF‐7 (MCF7/PKCδ) cells. Our data reveal that PKCδ inhibits caspase‐8 activation, a first step in TRAIL‐induced apoptosis, thus preventing TRAIL‐induced apoptosis. Inhibition of PKCδ using rottlerin or PKCδ siRNA reverses the inhibitory effect of PKCδ on caspase‐8 activation leading to TRAIL‐induced apoptosis. To determine if caspase‐3‐induced PKCδ cleavage reverses its inhibition on caspase‐8, we developed stable cell lines that either expresses wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) or caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδ mut) utilizing MCF‐7 cells expressing caspase‐3. Cells that overexpress caspase‐3 cleavage‐resistant PKCδ mutant (MCF‐7/cas‐3/PKCδmut) significantly inhibited TRAIL‐induced apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. In MCF‐7/cas‐3/PKCδmut cells, TRAIL‐induced caspase‐8 activation was blocked leading to inhibition of apoptosis when compared to wild‐type PKCδ (MCF‐7/cas‐3/PKCδ) expressing cells. Together, these results strongly suggest that overexpression of PKCδ inhibits caspase‐8 activation leading to inhibition of TRAIL‐induced apoptosis and its inhibition by rottlerin, siRNA, or cleavage by caspase‐3 sensitizes cells to TRAIL‐induced apoptosis. Clinically, PKCδ overexpressing tumors can be treated with a combination of PKCδ inhibitor(s) and TRAIL as a new treatment strategy. J. Cell. Biochem. 111: 979–987, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Interleukin (IL)‐1β plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. The production of IL‐1β is dependent upon caspase‐1‐containing multiprotein complexes called inflammasomes and IL‐1R1/MyD88/NF‐κB pathway. In this study, we explored whether a potential anti‐fibrotic agent fluorofenidone (FD) exerts its anti‐inflammatory and anti‐fibrotic effects through suppressing activation of NACHT, LRR and PYD domains‐containing protein 3 (NALP3) inflammasome and the IL‐1β/IL‐1R1/MyD88/NF‐κB pathway in vivo and in vitro. Male C57BL/6J mice were intratracheally injected with Bleomycin (BLM) or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with haemotoxylin and eosin and Masson's trichrome. Cytokines were measured by ELISA, and α‐smooth muscle actin (α‐SMA), fibronectin, collagen I, caspase‐1, IL‐1R1, MyD88 were measured by Western blot and/or RT‐PCR. The human actue monocytic leukaemia cell line (THP‐1) were incubated with monosodium urate (MSU), with or without FD pre‐treatment. The expression of caspase‐1, IL‐1β, NALP3, apoptosis‐associated speck‐like protein containing (ASC) and pro‐caspase‐1 were measured by Western blot, the reactive oxygen species (ROS) generation was detected using the Flow Cytometry, and the interaction of NALP3 inflammasome‐associated molecules were measured by Co‐immunoprecipitation. RLE‐6TN (rat lung epithelial‐T‐antigen negative) cells were incubated with IL‐1β, with or without FD pre‐treatment. The expression of nuclear protein p65 was measured by Western blot. Results showed that FD markedly reduced the expressions of IL‐1β, IL‐6, monocyte chemotactic protein‐1 (MCP‐1), myeloperoxidase (MPO), α‐SMA, fibronectin, collagen I, caspase‐1, IL‐1R1 and MyD88 in mice lung tissues. And FD inhibited MSU‐induced the accumulation of ROS, blocked the interaction of NALP3 inflammasome‐associated molecules, decreased the level of caspase‐1 and IL‐1β in THP‐1 cells. Besides, FD inhibited IL‐1β‐induced the expression of nuclear protein p65. This study demonstrated that FD, attenuates BLM‐induced pulmonary inflammation and fibrosis in mice via inhibiting the activation of NALP3 inflammasome and the IL‐1β/IL‐1R1/MyD88/ NF‐κB pathway.  相似文献   

16.
Vascular dysfunction resulting from diabetes is an important factor in arteriosclerosis. Previous studies have shown that during hyperglycaemia and diabetes, AKAP150 promotes vascular tone enhancement by intensifying the remodelling of the BK channel. However, the interaction between AKAP150 and the BK channel remains open to discussion. In this study, we investigated the regulation of impaired BK channel‐mediated vascular dysfunction in diabetes mellitus. Using AKAP150 null mice (AKAP150?/?) and wild‐type (WT) control mice (C57BL/6J), diabetes was induced by intraperitoneal injection of streptozotocin. We found that knockout of AKAP150 reversed vascular remodelling and fibrosis in mice with diabetes and in AKAP150?/? diabetic mice. Impaired Akt/GSK3β signalling contributed to decreased BK‐β1 expression in aortas from diabetic mice, and the silencing of AKAP150 increased Akt phosphorylation and BK‐β1 expression in MOVAS cells treated with HG medium. The inhibition of Akt activity caused a decrease in BK‐β1 expression, and treatment with AKAP150 siRNA suppressed GSK3β expression in the nuclei of MOVAS cells treated with HG. Knockout of AKAP150 reverses impaired BK channel‐mediated vascular dysfunction through the Akt/GSK3β signalling pathway in diabetes mellitus.  相似文献   

17.
18.
The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase‐3β (GSK‐3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid‐beta (Aβ)42‐induced neuronal toxicity model of Alzheimer's disease. In Aβ42‐induced toxic conditions, each PP2A and GSK‐3β activity measured at different times showed time‐dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre‐treatment showed dose‐dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK‐3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42‐induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK‐3β and nAChRs activity would partially contribute to its effects.

  相似文献   


19.
Bcl‐2 family proteins are critical for the regulation of apoptosis, with the pro‐apoptotic members Bax essential for the release of cytochrome c from mitochondria in many instances. However, we found that Bax was activated after mitochondrial depolarization and the completion of cytochrome c release induced by photodynamic therapy (PDT) with the photosensitizer Photofrin in human lung adenocarcinoma cells (ASTC‐a‐1). Besides, knockdown of Bax expression by gene silencing had no effect on mitochondrial depolarization and cytochrome c release, indicating that Bax makes no contribution to mitochondrial outer membrane permeabilization (MOMP) following PDT. Further study revealed that Bax knockdown only slowed down the speed of cell death induced by PDT, indicating that Bax is not essential for PDT‐induced apoptosis. The fact that Bax knockdown totally inhibited the mitochondrial accumulation of dynamin‐related protein (Drp1) and Drp1 knockdown attenuated cell apoptosis suggest that Bax can promote PDT‐induced apoptosis through promoting Drp1 activation. Besides, Drp1 knockdown also failed to inhibit PDT‐induced cell death finally, indicating that Bax‐mediated Drp1's mitochondrial translocation is not essential for PDT‐induced cell apoptosis. On the other hand, we found that protein kinase Cδ (PKCδ), Bim L and glycogen synthase kinase 3β (GSK3β) were activated upon PDT treatment and might contribute to the activation of Bax under the condition. Taken together, Bax activation is not essential for MOMP but essential for Drp1‐mediated mitochondrial fission during the apoptosis caused by Photofrin‐PDT. J. Cell. Physiol. 226: 530–541, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Chronic rhinosinusitis without nasal polyps (CRSsNP) is one of the most common otorhinolaryngologic diseases worldwide. However, the underlying mechanism remains unclear. In this study, the expression of glycogen synthase kinase 3 (GSK‐3) was quantitatively evaluated in patients with CRSsNP (n = 20) and healthy controls (n = 20). The mRNA levels of GSK‐3α and GSK‐3β were examined by qPCR, the immunoreactivities of GSK‐3β and nuclear factor‐κB (NF‐κB) were examined by immunohistochemistry (IHC) staining, and the protein levels of GSK‐3β, phospho‐GSK‐3β (p‐GSK‐3β, s9) and NF‐κB were examined using Western blot analysis. We found that GSK‐3 was highly expressed in both CRSsNP and control groups without significant difference in both GSK‐3β mRNA and protein levels. However, when compared with healthy control group, the GSK‐3β activation index, defined as the ratio of GSK‐3β over p‐GSK‐3β, was significantly decreased, whereas the NF‐κB protein abundance was significantly increased in CRSsNP group (P < 0.05). Strikingly, the GSK‐3β activation index, was highly correlated with NF‐κB protein level, as well as CT scores in CRSsNP group (P < 0.05). It was also highly correlated with the mRNA expressions of inflammation‐related genes, including T‐bet, IFN‐γ and IL‐4 in CRSsNP group (P < 0.05). Our findings suggest that GSK‐3β activation index, reflecting the inhibitory levels of GSK‐3β through phosphorylation, may be a potential indicator for recurrent inflammation of CRSsNP, and that the insufficient inhibitory phosphorylation of GSK‐3β may play a pivotal role in the pathogenesis of CRSsNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号