首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Diabetic neuropathy is the most common cause of peripheral neuropathy and a serious complication of diabetes. Vascular endothelial growth factor (VEGF) stimulates angiogenesis and has neurotrophic and neuroprotective activities. To examine the efficiency of VEGF 164 electro-gene therapy for neuropathy, intramuscular VEGF 164 gene transfer by electroporation was performed to treat sensory neuropathy in diabetic mice. METHODS: VEGF 164 was overexpressed in the tibial anterior (TA) muscles of streptozotocin-induced diabetic mice with hypoalgesia, using a VEGF 164 plasmid injection with electroporation. From 2 weeks after electro-gene transfer, the nociceptive threshold was measured weekly using the paw-pressure test. The TA muscles, sciatic nerve, liver and spleen were histochemically examined at 4 weeks after electro-gene transfer. RESULTS: Two weeks after electro-gene transfer into the bilateral TA muscles, the elevated nociceptive threshold was decreased to a normal level in all treated mice. Improvement of the hypoalgesia continued for 14 weeks. When the VEGF 164 plasmid was injected with electroporation into a unilateral TA muscle, recovery from hypoalgesia was observed in not only the ipsilateral hindpaw, but also the contralateral one, suggesting that VEGF circulates in the blood. No increase in the number of endoneurial vessels in the sciatic nerve was found in the VEGF 164 plasmid-electroporated mice. CONCLUSIONS: These findings suggest that VEGF 164 electro-gene therapy completely recovered the sensory deficits, i.e. hypoalgesia, in the diabetic mice through mechanisms other than angiogenesis in the endoneurium of the peripheral nerve, and may be useful for treatment for diabetic sensory neuropathy in human subjects.  相似文献   

2.
《Bioscience Hypotheses》2008,1(5):251-254
Xerostomia, or loss of saliva, can lead to degeneration of taste papillae on the tongue. Saliva contains neurotrophic factors such as nerve growth factor and epidermal growth factor. These neurotrophic factors are likely to be important for the maintenance of the peripheral nervous system. Furthermore, neurotrophic support of peripheral nerves by salivary neurotrophic factors may then be translated into neurotrophic support of the central nervous system. We propose that artificial saliva used to treat xerostomia should also contain suitable neurotrophic factors to prevent loss of taste sensation and possibly also prevent neuropathy of the central and peripheral nervous systems.  相似文献   

3.
Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium.  相似文献   

4.
Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy   总被引:32,自引:0,他引:32  
Ischemic peripheral neuropathy is a frequent, irreversible complication of lower extremity vascular insufficiency. We investigated whether ischemic peripheral neuropathy could be prevented and/or reversed by gene transfer of an endothelial cell mitogen designed to promote therapeutic angiogenesis. Intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor (VEGF) simultaneously with induction of hindlimb ischemia in rabbits abrogated the substantial decrease in motor and sensory nerve parameters, and nerve function recovered promptly. When gene transfer was administered 10 days after induction of ischemia, nerve function was restored earlier and/or recovered faster than in untreated rabbits. These findings are due in part to enhanced hindlimb perfusion. In addition, however, the demonstration of functional VEGF receptor expression by Schwann cells indicates a direct effect of VEGF on neural integrity as well. These findings thus constitute a new paradigm for the treatment of ischemic peripheral neuropathy.  相似文献   

5.
Painful peripheral neuropathy belongs to major side-effects limiting cancer chemotherapy. Paclitaxel, widely used to treat several cancers, induces neurological symptoms including burning pain, allodynia, hyperalgesia and numbness. Therefore, identification of drugs that may effectively counteract paclitaxel-induced neuropathic symptoms is crucial. Here, we combined histopathological, neurochemical, behavioral and electrophysiological methods to investigate the natural neurosteroid 3α-androstanediol (3α-DIOL) ability to counteract paclitaxel-evoked peripheral nerve tissue damages and neurological symptoms. Prophylactic or corrective 3α-DIOL treatment (4 mg/kg/2days) prevented or suppressed PAC-evoked heat-thermal hyperalgesia, cold-allodynia and mechanical allodynia/hyperalgesia, by reversing to normal, decreased thermal and mechanical pain thresholds of PAC-treated rats. Electrophysiological studies demonstrated that 3α-DIOL restored control values of nerve conduction velocity and action potential peak amplitude significantly altered by PAC-treatment. 3α-DIOL also repaired PAC-induced nerve damages by restoring normal neurofilament-200 level in peripheral axons and control amount of 2’,3’-cyclic-nucleotide-3’-phosphodiesterase in myelin sheaths. Decreased density of intraepidermal nerve fibers evoked by PAC-therapy was also counteracted by 3α-DIOL treatment. More importantly, 3α-DIOL beneficial effects were not sedation-dependent but resulted from its neuroprotective ability, nerve tissue repairing capacity and long-term analgesic action. Altogether, our results showing that 3α-DIOL efficiently counteracted PAC-evoked painful symptoms, also offer interesting possibilities to develop neurosteroid-based strategies against chemotherapy-induced peripheral neuropathy. This article shows that the prophylactic or corrective treatment with 3α-androstanediol prevents or suppresses PAC-evoked painful symptoms and peripheral nerve dysfunctions in rats. The data suggest that 3α-androstanediol-based therapy may constitute an efficient strategy to explore in humans for the eradication of chemotherapy-induced peripheral neuropathy.  相似文献   

6.
Diabetic peripheral neuropathy (DPN) is a nervous disorder caused by diabetes mellitus, affecting about 50% of patients in clinical medicine. Chronic pain is one of the major and most unpleasant symptoms developed by those patients, and conventional available treatments for the neuropathy, including the associated pain, are still unsatisfactory and benefit only a small number of patients. Photobiomodulation (PBM) has been gaining clinical acceptance once it is able to promote early nerve regeneration resulting in significant improvement in peripheral nerves disabilities. In this work, the effects of PBM (660 nm, 30 mW, 1.6 J/cm2, 0.28 cm2, 15 s in a continuous frequency) on treating DPN‐induced pain and nerve damage were evaluated in an experimental model of diabetic‐neuropathy induced by streptozotocin in mice. PBM‐induced antinociception in neuropathic‐pain mice was dependent on central opioids release. After 21 consecutive applications, PBM increased nerve growth factor levels and induced structural recovery increasing mitochondrial content and regulating Parkin in the sciatic nerve of DPN‐mice. Taking together, these data provide new insights into the mechanisms involved in the effects of PBM‐therapy emphasizing its therapeutic potential in the treatment of DPN.   相似文献   

7.
8.
Although numerous clinical studies have reported that pulsed electromagnetic fields (PEMF) have a neuroprotective role in patients with diabetic peripheral neuropathy (DPN), the application of PEMF for clinic is still controversial. The present study was designed to investigate whether PEMF has therapeutic potential in relieving peripheral neuropathic symptoms in streptozotocin (STZ)-induced diabetic rats. Adult male Sprague–Dawley rats were randomly divided into three weight-matched groups (eight in each group): the non-diabetic control group (Control), diabetes mellitus with 15 Hz PEMF exposure group (DM+PEMF) which were subjected to daily 8-h PEMF exposure for 7 weeks and diabetes mellitus with sham PEMF exposure group (DM). Signs and symptoms of DPN in STZ-treated rats were investigated by using behavioral assays. Meanwhile, ultrastructural examination and immunohistochemical study for vascular endothelial growth factor (VEGF) of sciatic nerve were also performed. During a 7-week experimental observation, we found that PEMF stimulation did not alter hyperglycemia and weight loss in STZ-treated rats with DPN. However, PEMF stimulation attenuated the development of the abnormalities observed in STZ-treated rats with DPN, which were demonstrated by increased hind paw withdrawal threshold to mechanical and thermal stimuli, slighter demyelination and axon enlargement and less VEGF immunostaining of sciatic nerve compared to those of the DM group. The current study demonstrates that treatment with PEMF might prevent the development of abnormalities observed in animal models for DPN. It is suggested that PEMF might have direct corrective effects on injured nerves and would be a potentially promising non-invasive therapeutic tool for the treatment of DPN.  相似文献   

9.
Novel molecular techniques such as conventional and ex vivo gene therapy, and tissue engineering have only recently been introduced to the field of urology. The lower urinary tract is ideally suited for minimally invasive therapy, and also ex vivo approaches would limit the risk of systemic side effects. Muscle-derived stem cells have been used successfully to treat stress incontinence, and rats with diabetic bladder dysfunction benefited from nerve growth factor (NGF)-based gene therapy. Nitric oxide synthase and capase-7 might provide suitable gene therapy targets for erectile dysfunction and benign prostatic hyperplasia, respectively.  相似文献   

10.
Charcot-Marie-Tooth neuropathy type 1 (CMT1) is an autosomal dominant disorder of peripheral nerve. The gene for CMT1 was originally localized to chromosome 1 by linkage to the Duffy blood group, but it has since been shown that not all CMT1 pedigrees show this linkage. We report here the results of linkage studies using five chromosome 1 markers--Duffy (Fy), antithrombin III (AT3), renin (REN), beta-nerve growth factor (NGFB), and salivary amylase (AMY1)--in 16 CMT1 pedigrees. The total lod scores exclude close linkage of CMT1 to any of these markers. However, individual families show probable linkage of CMT1 to Duffy, AT3, and/or AMY1. No linkage was indicated with REN or NGFB. These results indicate the possible location of a CMT1 gene between the AMY1 and AT3 loci at p21 and q23, respectively, on chromosome 1 and support the theory that there is at least one other CMT1 gene.  相似文献   

11.
Peripheral neuropathy is a serious diabetic complication. Delayed nerve regeneration in diabetic animal models suggests abnormalities in proliferation/differentiation of Schwann cells (SC). We recently reported that endothelins (ETs) regulate proliferation and phenotype in primary and immortalized SC (iSC). We now investigated changes in the effects of ETs on SC proliferation and signaling in nerve segments from streptozotocin-induced diabetic rats and in iSC exposed to high glucose. Cultured explants from diabetic rats displayed a delay in the time-course of [3H]-thymidine incorporation as well as enhanced sensitivity to endothelin-1 (ET-1) or insulin. iSC cultured in high (25 mM) glucose-containing media also exhibited higher [3H]-thymidine incorporation, along with an enhanced activation of p38 mitogen-activated protein kinase and phospholipase C in response to ET-1 or platelet-derived growth factor as compared to controls (5.5 mM glucose). These studies support an extra-vascular role of ETs in peripheral nerves and SC. The increased sensitivity to ET-1 in nerves and iSC exposed to high glucose may contribute to abnormal SC proliferation characterizing diabetic neuropathy.  相似文献   

12.
Although peripheral-nerve injury has been described as clearly related to electrical injury, that electrical injury is usually associated with third- and often fourth-degree burns. The report presented here describes three cases of low-voltage electrical injury with associated peripheral-nerve symptoms but without clinically significant cutaneous burns. The symptoms and clinical findings resembled peripheral-nerve compression. The presence of these symptoms and findings in the upper- and lower-extremities and the presence of bilateral involvement suggest a systemic electrical injury that resembles a peripheral neuropathy. Symptoms were relieved by the decompression of nerves at multiple sites in each extremity. Perineurial fibrosis was identified at the time of nerve decompression. It is proposed that the electrical injury causes maximal heat production at areas of minimal limb cross-sectional area. In these areas, the peripheral nerve is in close proximity to bone and fibrous tissue. This results in perineurial fibrosis and symptoms of a compressive peripheral neuropathy.  相似文献   

13.
目的:观察光子中医信息疗法对糖尿病周围神经病变患者的临床疗效。方法:将60例符合入选标准的患者,以1∶1的比例随机分配到治疗组(光子中医信息疗法联合药物组)、对照组(药物组),两组患者均给予糖尿病基础治疗,对照组加甲钴胺口服,每次500μg,每日3次,疗程4周;治疗组在对照组的基础上配合光子中医信息疗法,隔日照射1次,每周3次,6次为1疗程,共2个疗程。治疗前后分别对两组患者的中医临床症状、神经症状体征进行评定,并测定周围神经传导速度及观察血糖变化情况,进行综合疗效评估。结果:治疗组的临床综合疗效明显优于对照组,两组的总有效率比较有显著性差异(P<0.05)。治疗组在中医症状改善、周围神经症状及体征改善、提高周围神经传导速度方面均优于对照组,组间比较均具有显著性差异(P<0.05)。治疗后治疗组空腹血糖、餐后血糖、糖化血红蛋白与治疗前比较均明显降低(P<0.01),对照组治疗前后比较及治疗后组间比较均无显著性差异(P>0.05)。结论:光子中医信息疗法联合药物组相对于药物组在改善DPN患者的临床症状、周围神经症状及体征、神经的传导速度等方面均有良好的优势,同时具有一定的辅助降糖趋势。  相似文献   

14.
Hepatocyte growth factor (HGF) is a neurotrophic factor and its role in peripheral nerves has been relatively unknown. In this study, biological functions of HGF and its receptor c-met have been investigated in the context of regeneration of damaged peripheral nerves. Axotomy of the peripheral branch of sensory neurons from embryonic dorsal root ganglia (DRG) resulted in the increased protein levels of HGF and phosphorylated c-met. When the neuronal cultures were treated with a pharmacological inhibitor of c-met, PHA665752, the length of axotomy-induced outgrowth of neurite was significantly reduced. On the other hand, the addition of recombinant HGF proteins to the neuronal culture facilitated axon outgrowth. In the nerve crush mouse model, the protein level of HGF was increased around the injury site by almost 5.5-fold at 24 h post injury compared to control mice and was maintained at elevated levels for another 6 days. The amount of phosphorylated c-met receptor in sciatic nerve was also observed to be higher than control mice. When PHA665752 was locally applied to the injury site of sciatic nerve, axon outgrowth and injury mediated induction of cJun protein were effectively inhibited, indicating the functional involvement of HGF/c-met pathway in the nerve regeneration process. When extra HGF was exogenously provided by intramuscular injection of plasmid DNA expressing HGF, axon outgrowth from damaged sciatic nerve and cJun expression level were enhanced. Taken together, these results suggested that HGF/c-met pathway plays important roles in axon outgrowth by directly interacting with sensory neurons and thus HGF might be a useful tool for developing therapeutics for peripheral neuropathy.  相似文献   

15.
A L Dellon 《Plastic and reconstructive surgery》1992,89(4):689-97; discussion 698-9
Symptomatic diabetic sensorimotor polyneuropathy is considered progressive and irreversible. The hypothesis that symptoms of diabetic neuropathy may be due to entrapment of peripheral nerves was investigated in a prospective study from 1982 to 1988 in which diabetics (38 type I, 22 type II) had surgical decompression of 154 peripheral nerves in 51 upper extremities and 31 lower extremities. Mean postoperative follow-up was 30 months (range 6 to 83 months). Considering the entire series, an excellent final result was noted for motor function in 44 percent and for sensory function in 67 percent of the decompressed nerves. Ten percent of the patients were not improved, and 2 percent were worse in sensorimotor function. Upper extremity nerve decompressions achieved better results than lower extremity nerve decompressions. Improvement in postoperative electrodiagnostic studies varied in relationship to the preoperative electrodiagnosis. Improvement was noted in 100 percent of those nerves with the preoperative diagnosis of "localized entrapment," 80 percent for "peripheral neuropathy with superimposed entrapment," and 50 percent for "peripheral neuropathy." Progressive neuropathy occurred in a nontreated limb of 50 percent of those patients whose surgically treated limb maintained improvement. The results of this study suggest that symptoms of sensorimotor diabetic neuropathy may be due partly to compression of multiple peripheral nerves. The results further suggest that surgical decompression of such nerves may result in symptomatic improvement.  相似文献   

16.
Mutations in the gene of the peripheral myelin protein zero (P0) give rise to the peripheral neuropathies Charcot-Marie-Tooth type 1B disease (CMT1B), Déjérine-Sottas syndrome, and congenital hypomyelinating neuropathy. To investigate the pathomechanisms of a specific point mutation in the P0 gene, we generated two independent transgenic mouse lines expressing the pathogenic CMT1B missense mutation Ile106Leu (P0sub) under the control of the P0 promoter on a wild-type background. Both P0sub-transgenic mouse lines showed shivering and ultrastructural abnormalities including retarded myelination, onion bulb formation, and dysmyelination seen as aberrantly folded myelin sheaths and tomacula in all nerve fibers. Functionally, the mutation leads to dispersed compound muscle action potentials and severely reduced conduction velocities. Our observations support the view that the Ile106Leu mutation acts by a dominant-negative gain of function and that the P0sub-transgenic mouse represents an animal model for a severe, tomaculous form of CMT1B.  相似文献   

17.
周围神经损伤是临床常见的疾病。损伤后神经的修复和再生是复杂又漫长的过程。严重的神经损伤其预后效果并不令人满意,相应支配区域的功能难以恢复,这给患者及家人带来了极大的痛苦。因此如何更好的对周围神经损伤进行治疗一直是医学界的难题。在神经修复机制的研究中,科学家发现施万细胞对周围神经的修复和再生起到了非常重要的作用,但获取和扩增的困难限制了其临床的应用。随着生物医学的发展,人们把目光投向了干细胞,经实验发现干细胞不仅具有旺盛的增殖能力,而且可以分化为神经系细胞,还能分泌相关的神经营养因子促进神经的修复和再生,这为周围神经损伤后的治疗带来了新的希望。本文就近些年来应用于修复周围神经的干细胞及促进修复机制的研究做以综述。  相似文献   

18.
Recently, a novel therapeutic treatment for ischemic diseases using angiogenic growth factors to augment collateral artery development has been proposed. As intramuscular injection of naked human hepatocyte growth factor (HGF) plasmid DNA induced therapeutic angiogenesis in several animal test subjects, we have started a clinical trial to treat peripheral arterial disease. However, one might assume that over-expression of angiogenic growth factors could enhance tumor growth. To resolve this issue, we examined the over-expression of HGF in tumor bearing mice. Tumors on their backs were prepared with an intradermal inoculation of A431, human epidermoid cancer cells expressing c-Met. These mice were intramuscularly injected with human HGF plasmid or control plasmid into the femoral muscle. Human HGF concentration was increased only in the femoral muscle, but not in blood. Although recombinant HGF stimulated the growth of A431 cells in vitro, temporally and locally HGF elevation in hindlimb had no effect on tumor growth in mice.  相似文献   

19.
Pandey R  Blanco J  Udolph G 《PloS one》2011,6(11):e28106
During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail.  相似文献   

20.
Diabetic neuropathy develops as a result of hyperglycemia- induced local metabolic and microvascular changes in both type I and type II diabetes mellitus. Diabetic neuropathy shows slower impulse conduction, axonal degeneration, and impaired regeneration. Diabetic neuropathy affects peripheral, central, and visceral sensorimotor and motor nerves, causing improper locomotor and visceral organ dysfunctions. The pathogenesis of diabetic neuropathy is complex and involves multiple pathways. Lack of success in preventing neuropathy, even with successful treatment of hyperglycemia, suggests the presence of early mediators between hyperglycemia-induced metabolic and enzymatic changes and functional and structural properties of Schwann cells (SCs) and axons. It is feasible that once activated, such mediators can act independently of the initial metabolic stimulus to modulate SC-axonal communication. Neuropoietic cytokines, including interleukin-1 (IL-1), interleukin-6 (IL-6), leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), tumor necrosis factor alpha (TNF-α), and transforming growth factor beta (TGF- β), exhibit pleiotrophic effects on homeostasis of glia and neurons in central, peripheral, and autonomic nervous system. These cytokines are produced locally by resident and infiltrating macrophages, lymphocytes, mast cells, SCs, fibroblasts, and sensory neurons. Metabolic changes induced by hyperglycemia lead to dysregulation of cytokine control. Moreover, their regulatory roles in nerve degeneration and regeneration may potentially be utilized for the prevention and/or therapy of diabetic neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号