首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The chemical composition of the essential oils and aromatic waters isolated from six Italian Anthemis maritima populations was determined by GC‐FID and GC/MS analyses. In total, 122 and 100 chemical compounds were identified in the essential oils and the aromatic waters, respectively. The main compound classes represented in the oils were monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, and terpene esters. Multivariate chemometric techniques such as cluster analysis (CA) and principal coordinate analysis (PCO) were used to classify the samples according to the geographical origin. Statistical analysis allowed the attribution of the analyzed populations to different chemotype groups.  相似文献   

2.
The chemical composition of the essential oils of twenty-five populations of Cistus creticus subsp. creticus L. from the island of Crete (Greece) and their interpopulation variability were analysed in detail by GC-MS. 142 compounds were identified representing an average of 56.8-89.8% of the oil composition. The components are represented here by homologous series of monoterpenes, oxygenated monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, diterpenes, labdane diterpenes, aldehydes, alkanes, esters, fatty acids, ketones, and others. Labdane diterpenes were detected and identified in the essential oils and have been found in high percentage composition. The results from the chemical analysis of the essential oils were submitted to chemometric cluster analysis in order to detect some pattern distribution and to identify which constituents can differentiate the groups of individuals. Two main chemotypes (clusters) were well differentiated; the first deals with eight populations of West Crete and the second with the rest of the populations. Cluster analysis based on labdane type diterpenes patterns, proved to be the best chemotype for the examined populations among the other chemical groups.  相似文献   

3.
Yarrow (Achillea millefolium L.) is a herbaceous species common in the Alpine region of Europe and used in folk medicine since antiquity. Its organs are rich in monoterpenes and sesquiterpenes, two subclasses of plant terpenoids with relevant ecological significance, which were reported as valuable markers for the traceability of mountain dairy products. The variability in chemical composition of yarrow germplasm may be related with its genetic diversity, accounting for possible differences in medical properties, and supporting its use as a specific territorial marker. Aim of this work was to assess the leaf chemical composition of 16 yarrow populations collected at altitudes exceeding 1600 m in three valleys of the Rhaetian Alps, Italy, and jointly evaluated in a lowland site. The most abundant compounds detected generally differed from those of the germplasm from other countries. A trend of valley‐specific pattern of composition was evident. However, the variability among individual populations was even more remarkable, regardless of their valley of origin. The concentrations of sesquiterpene hydrocarbons, oxygenated monoterpenes, and oxygenated sesquiterpenes discriminated the populations in multivariate analysis. A few prevailing chemotypes were characterized, which differed from those previously reported in the literature. The geographic isolation from other germplasms, and the local ecotypization, likely originated a chemically distinct gene pool.  相似文献   

4.
The main objective of this work was to study the essential oil composition of ripe Juniperus oxycedrus L. berries and its natural variation among wild populations in Kosovo. Essential oil was analysed using GC-FID and GC–MS. Plant materials were collected from five locations in Kosovo in August and September of 2011. In total, twenty-seven compounds were identified in the essential oils. The main components were β-myrcene (45.5–56.9%), α-pinene (10.2–36.6%), dl-limonene (3.6–13.8%) and germacrene D (1.7–8.7%). Of the total identified compounds, monoterpenes constituted the highest percentage of all components (70.24–88.22%), followed by oxygenated sesquiterpenes (4.9–11.4%), sesquiterpenes (3.5–11.0%), oxygenated monoterpenes (0.2–2.7%) and oxygenated diterpenes (0.0–1.7). Hierarchical Cluster Analysis (HCA) and Principal Component Analyses (PCA) were used to identify any geographical variations in essential oil composition. Statistical analysis suggests that the clustering of populations is not related to their geographic location, but rather seemed to be linked to local selective forces acting on chemotype diversity.  相似文献   

5.
The essential oils (EOs) of green seeds from Daucus carota subsp. maximus growing wild in Pantelleria Island (Sicily, Italy) were characterized. EOs were extracted by steam distillation, examined for their inhibitory properties against food‐borne Gram‐positive and Gram‐negative bacteria and analyzed for the chemical composition by gas chromatography (GC) and mass spectrometry (MS). Undiluted EOs showed a large inhibition spectrum against Gram‐positive strains and also vs. Acinetobacter spp. and Stenotrophomonas maltophilia. The minimum inhibition concentration (MIC) was in the range 1.25 – 2.50 μl/ml for the most sensitive strains. The chemical analysis indicated that Dcarota subsp. maximus EOs included 34 compounds (five monoterpene hydrocarbons, six oxygenated monoterpenes, 14 sesquiterpene hydrocarbons, four oxygenated sesquiterpenes, camphorene and four other compounds), accounting for 95.48% of the total oil, and that the major chemicals were carotol, β‐bisabolene, and isoelemicin.  相似文献   

6.
The hydrodistilled essential oils (EOs) from flowers of five Adriatic populations of Anthemis maritima were analyzed by GC‐FID and GC/MS. Anthemis maritima is a psammophilous plant living generally on coastal sand dunes but occasionally on sea cliffs and shingle beaches. A total of 163 chemical compounds were identified, accounting for 90.5% of the oils. The main classes of compounds represented in the EOs were monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated sesquiterpenes, and terpene esters.The multivariate chemometric techniques, in particular cluster analysis and principal coordinate analysis, used to classify the samples, highlighted three different chemotypes linked to a geographic origin. One group living in northern Italy was characterized by the highest content of β‐pinene, γ‐terpinene, and β‐caryophyllene, a second chemotype was in central Italy with the highest amount of trans‐chrysanthenyl acetate and a third group living in southern Italy with a more heterogeneous volatile profile was characterized by the highest values of cis‐chrysanthenyl acetate, trans‐chrysanthenyl isobutyrate, cis‐carveol propionate, α‐zingiberene, and cubenol. Moreover, the comparison of the Adriatic populations with the Tyrrhenian samples, analyzed in a previous research, showed that cubenol (absent in all the Tyrrhenian populations) and (E)‐β‐farnesene (absent in all the Adriatic samples) play a crucial role in discriminating the Italian populations.  相似文献   

7.
The composition and variability of the terpenes and their derivatives isolated from the needles of a representative pool of 114 adult trees originating from four natural populations of dwarf mountain pine (Pinus mugo Turra ) from the Julian Alps were investigated by GC‐FID and GC/MS analyses. In total, 54 of the 57 detected essential‐oil components were identified. Among the different compound classes present in the essential oils, the chief constituents belonged to the monoterpenes, comprising an average content of 79.67% of the total oil composition (74.80% of monoterpene hydrocarbons and 4.87% of oxygenated monoterpenes). Sesquiterpenes were present in smaller amounts (average content of 19.02%), out of which 16.39% were sesquiterpene hydrocarbons and 2.62% oxygenated sesquiterpenes. The most abundant components in the needle essential oils were the monoterpenes δ‐car‐3‐ene, β‐phellandrene, α‐pinene, β‐myrcene, and β‐pinene and the sesquiterpene β‐caryophyllene. From the total data set of 57 detected compounds, 40 were selected for principal‐component analysis (PCA), discriminant analysis (DA), and cluster analysis (CA). The overlap tendency of the four populations suggested by PCA, was as well observed by DA. CA also demonstrated similarity among the populations, which was the highest between Populations I and II.  相似文献   

8.
The essential oil obtained by hydrodistillation from the aerial parts of Tunisian endemic Hypericum triquetrifolium Turra (Clusiaceae) was analyzed using GC and GC-MS. One hundred and nine compounds consisting of 92.2% of total detected constituents were identified. Sesquiterpene hydrocarbons were the main constituents (59.37%), Alpha-humulene, cis-calamenene, delta-cadinene, bicyclogermacrene, eremophilene, betacaryophyllene and (E)-gamma-bisabolene were found as the main ones. Alpha-pinene (10.33%) was detected as the main monoterpene hydrocarbons (12.19%). The oxygenated sesquiterpenes constituted (9.33%); caryophyllene oxide (1.38%) was reported as the main constituent of this fraction. The oxygenated monoterpenes were weakly represented (4.62%) and consisted of constituents in low percentages (<1%).  相似文献   

9.
The composition of the essential oils of nine populations of Cistus parviflorus L., from Crete (Greece) and their interpopulation variability, were investigated by GC-MS. 114 compounds were identified representing an average of 85-96% of oil composition. Labdane diterpenes were detected and identified in the essential oils of Cistus parviflorus L. for the first time. The results obtained from GC-MS analysis of the volatile oils were submitted to principal component and chemometric cluster analysis. Two main chemotypes (clusters) were differentiated; the first of West Crete and the second of East Crete. Carvacrol, caryophyllene oxide, alpha-epi-cadinol, abietatriene, 4-epi-dehydroabietol, dehydro abietol, cis-ferruginol and manoyl oxide mixture of isomers are the main constituents, while oxygenated sesquiterpenes as well as diterpenes have been found in high percentage composition.  相似文献   

10.
The effect of the collection sites and phenophase on yield and chemical composition of Salvia verbenaca essential oils was evaluated. The essential oil constituents were assessed by gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS). The highest essential oil yields were observed for samples of the higher semi-arid bioclimate and at the flowering period. Eighty-five volatile constituents were identified and their percentages varied significantly (p < 0.05) depending on the collection site and the phenological stage. According to the plants origin, essential oils were dominated by monoterpene hydrocarbons, oxygenated monoterpenes and sesquiterpene hydrocarbons. The monoterpene hydrocarbons (31.9%) predominate at the flowering stage whereas oxygenated sesquiterpenes (27.5%) at the early fruiting stage. The sesquiterpene hydrocarbons (28.2%) was the most represented chemical class at late fruiting. On the basis of GC-MS data, the major identified volatile constituents were viridiflorol (3.4–17.7%), α-pinene (0.7–15.9%), β-caryophyllene (1.0–15.3%) and p-cymene (1.3–14.2%). S. verbenaca contains a diversity of bioactive constituents which shows large variations as affected by the collection sites and phenophase.  相似文献   

11.
The chemical composition of 44 leaf oil samples of Laggera pterodonta (DC.) Sch.Bip. ex Oliv. (Asteraceae) from Côte d'Ivoire was investigated, using combination of chromatographic (GC‐FID) and spectroscopic (GC/MS, 13C‐NMR) techniques. Two oil samples chosen according to their chromatographic profiles were submitted to column chromatography and all fractions of CC were analyzed by GC‐FID, GC/MS and 13C‐NMR. In total, 83 components accounting for 96.5 to 99.4 % of the whole chemical composition were identified. Significant variations were observed within terpene classes: monoterpene hydrocarbons (0.4–22.7 %), oxygenated monoterpenes (32.9–54.9 %), sesquiterpene hydrocarbons (18.6–38.3 %) and oxygenated sesquiterpenes (3.5–38.4 %). Thus, the 44 compositions were subjected to hierarchical cluster analysis (HCA) and principal component analysis (PCA). Two groups were differentiated according to their composition. All the samples contained 2,5‐dimethoxy‐p‐cymene, α‐humulene and (E)‐β‐caryophyllene among the main components. Other components were present at appreciable contents and allowed differentiation of two groups: sabinene and germacrene D for Group I; 10‐epiγ‐eudesmol and eudesm‐7(11)‐en‐4α‐ol for Group II. All the samples collected in Eastern Côte d'Ivoire constituted Group I, while samples collected in the Central area of the country constituted Group II.  相似文献   

12.
采用水蒸气蒸馏的方法,对采自云南4个不同地区(昆明,丽江,普洱,新平)的臭灵丹叶子进行挥发油提取,并利用GC MS和GC FID气相色谱联用技术分析其化学组成,分别从中鉴定出39、37、33、44个化合物。鉴定的化合物各占挥发油总量的9332% (昆明)、8057% (丽江)、9224% (普洱)和9385% (新平)。研究结果表明,采自这四个地区植物样品提取所得挥发油化学组成不尽相同:昆明产臭灵丹挥发油富含芳香族化合物(3806%);而从丽江和普洱样品中获得的挥发油化学成分以倍半萜(分别为1989%和4465%)和氧化倍半萜(分别为4085%和3511%)为主;非氧化单萜和非氧化倍半萜化合物(分别为4223%和3325%)则是新平产臭灵丹挥发油的主要化合物类型。同时,对这些不同产地的臭灵丹挥发油也进行了抗菌活性测试。从以上实验研究结果推测环境差异是影响臭灵丹挥发油化学组成差异的重要因素,而不同的化学组成可能是导致4种样品抗菌敏感程度不同的原因。  相似文献   

13.
Essential oils obtained by hydrodistillation from leaves of Laggera pterodonta collected from four different locations (Kunming, Lijiang, Puer and Xinping) in Yunnan, China, were analyzed using GC MS and GC FID. The number of compounds identified in each sample was 39, 37, 33 and 44, respectively, representing 9332% (Kunming), 8057% (Lijiang), 9224% (Puer) and 9385% (Xinping) of total essential oils. Chemical compositions of essential oils differed between sample locations: thus, those from Kunming were rich in benzenoid compounds (3806%) while those from Lijiang and Puer were largely dominated by sesquiterpenes (1989% and 4465% respectively) and sesquiterpenes oxide (4085% and 3511%, respectively), and those from Xinping contained a high proportion of monoterpene hydrocarbons and sesquiterpene hydrocarbons (4223% and 3325% respectively) (7548%). The results of tests on the antimicrobial activities of essential oils indicated that chemical composition was affected by environmental variation causing differences in sensitivity to microbes among samples.  相似文献   

14.
The hydro-distilled volatile oil of the Cinnamomum zeylanicum (C. zeylanicum) buds was analyzed using GC and GC-MS for the first time. Thirty-four compounds representing approximately 98% of the oil was characterized. It consists of terpene hydrocarbons (78%) and oxygenated terpenoids (9%). alpha-Bergamotene (27.38%) and alpha-copaene (23.05%) are found to be the major compounds. A comparison of the chemical composition of the oil was made with that of flowers and fruits.  相似文献   

15.
The essential oil composition of Centaurea atropurpurea and Centaurea orientalis flowering heads (capitula) from Central Balkans have been determined by GC‐FID and GC/MS analyses. In total, 121 compounds were identified, representing on average 97.7% of the oil composition. In all samples, sesquiterpenes were most abundant group, representing 53.9 – 74.0% of the total oil. Sesquiterpene hydrocarbons dominated in all studied populations of C. orientalis and C. atropurpurea, except C. atropurpurea f. flava in which essential oil was characterized with high level of oxygenated sesquiterpenes. The dominant components differed between species, and also between typical C. atropurpurea and C. atropurpurea f. flava. The most abundant compounds of essential oil of C. orientalis were germacrene D and α‐cadinol. In C. atropuruprea, germacrene D and β‐caryophyllene were the most abundant, while caryophyllene oxide and β‐caryophyllene were dominant in C. atropurpurea f. flava oil. Taxonomical and ecological implications are further discussed.  相似文献   

16.
The composition of the essential oils of fifteen populations of Cistus salviifolius L. (Cistaceae) from Crete (Greece) and their interpopulation variability was investigated by GC-MS. 167 compounds were identified representing an average of 96–100% of the oil composition. Labdane diterpenes were detected and identified in the essential oils of Cistus salviifolius L., for the first time. The results obtained from GC-MS analysis of the oils were submitted to a Principal Component Analysis (PCA). Three main chemotypes (clusters) were differentiated. All the essential oils were tested for their antimicrobial activity against Gram-positive and Gram-negative bacteria. Only chemotype III having camphor as a major constituent was active against Gram-positive bacteria. Camphor, viridiflorol, longiborneol, phyllocladene, abietatriene and cis-feruginol are the main constituents, while the group of oxygenated sesquiterpenes has the highest percentage composition.  相似文献   

17.
The essential oil composition of Calendula arvensis was established for the first time using GC and GC/MS. Eighty-five essential oil components were identified, which accounted for 90.3 g/100 g of essential oil. The oil contained a high concentration of sesquiterpenes, of which δ-cadinene and α-cadinol were the main components. The chemical composition of 25 Corsican C. arvensis oils was analyzed to determine intraspecies variation in essential oil composition. A matrix linking essential oil composition to sample location was composed to identify relationships between concentrations of volatile samples and the geographical origins of samples. Two main groups of compounds were identified according to the amount of sesquiterpenic compounds (hydrocarbons and alcohols) and soil characteristics. Seasonal variation (winter vs. spring) in the concentrations of two major compounds during the flowering period was observed.  相似文献   

18.
Headspace solid-phase microextraction (HS-SPME) coupled with GC/FID and GC/MS was applied for the first time in the analysis of the volatile fraction of an Ephedra species. Notably, six Italian populations (Marche, Abruzzo, and Sardinia) of Ephedra nebrodensis subsp. nebrodensis, covering almost the entire Italian area, were investigated to examine the chemical variability and to support the taxonomy of the species. A fiber screening with polymethylsiloxane (PDMS), Carboxen(TM) /polymethylsiloxane (CAR/PDMS), and polymethylsiloxane/divinylbenzene (PDMS/DVB) coatings, together with an optimization of the extraction conditions were carried out before analysis of the six populations. A total of 119 volatiles were identified in the headspace of different samples, accounting for 63.35-100.00% of the total volatiles. A great variability was found in the qualitative composition of different samples, since only 18 components were in common among all populations. The headspace composition was dominated by sesquiterpene hydrocarbons (52.30-88.32%), with β-maaliene (traces-7.49%), β-patchoulene (traces-1.29%), β-panasinsene (traces-6.85%), α-isocomene (traces-31.25%), α-trans-bergamotene (traces-6.95%), alloaromadendrene (traces-33.20%), α-acoradiene (traces-9.41%), and γ-muurolene (0.61-16.33%) being the most abundant constituents. Noteworthy is the occurrence in a sample of two major unknown sesquiterpenes, one hydrocarbon (24.49%, RI: 1396) and one oxygenated compound (10.37%, RI: 1591), whose mass spectra were reported for the first time. Multivariate chemometric techniques, such as cluster analysis (CA) and principal component analysis (PCA), were used to characterize the samples according to the geographical origin.  相似文献   

19.
KNUDSEN, J. T. & TOLLSTEN, L., Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Floral scent from 15 moth-pollinated species in nine families was collected by head-space adsorption. The chemical composition was determined by coupled gas chromatography-mass spectrometry (GC-MS). The typical floral scent of moth-pollinated flowers contains some acyclic terpene alcohols, their corresponding hydrocarbons, benzenoid alcohols and esters and small amounts of some nitrogen compounds. The floral scent composition of sphingophilous flowers can be distinguished from that of phalaenophilous flowers by the presence of oxygenated sesquiterpenes. The flowers of three of the studied species had the general appearance and floral scent composition of moth-pollinated flowers, but contained no nectar reward. These species probably rely on deceptive pollination by naive visitors, which are deceived by the similarity of the flowers' morphological and scent chemistry to that of rewarding moth flowers. The finding of similar or structurally closely related floral scent compounds in both temperate and tropical species from both the Old and New worlds suggests that floral scent composition has been selected by a specific group of pollinators, moths that have similar sensory preferences. The functions of floral scent in moth-pollinated flowers are discussed in relation to an often observed over-representation of male moth visitors.  相似文献   

20.
To evaluate the chemotaxonomic significance of the essential oils of 23 populations of 18 Iranian Ferula species, the chemical composition of the oils was investigated by GC/FID and GC/MS. Altogether, 84 constituents, representing 81.3-99.7% of the total composition of the oils, have been identified. The composition of six species of the genus, i.e., F. oopoda, F. foetida, F. behboudiana, F. diversivittata, F. galbaniflua, and F. hezarlalehzarica, has been reported for the first time. The main constituents identified were α-terpinyl acetate (73.3%), 2,3,4-trimethylthiophene (2; 49.0%), sabinene (75.3%), verbenone (5; 69.4%), β-pinene (59.0-66.3%), and (Z)-β-ocimene (41.7%). Cluster analysis (CA) of the percentage content of the essential oil components of the Ferula species resulted in the characterization of four groups, i.e., taxa containing either i) monoterpene hydrocarbons, ii) oxygenated monoterpenes, iii) organosulfur compounds, or iv) monoterpene, sesquiterpene, and aliphatic hydrocarbons as the principal classes of compounds. Based on the results obtained, the chemical independence of F. hirtella from F. szowitsiana and of F. galbaniflua from F. gummosa at the specific level was concluded and their positions as distinct species were confirmed. The chemotaxonomic relationships among the representatives of the genus Ferula have been discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号