首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthetic precursors of the mammalian tachykinins, alpha-, beta-and gamma-preprotachykinins, contain a common N-terminal region of 74 amino acids. A polyclonal antiserum was raised against a synthetic peptide representing N-tyrosylated beta-preprotachykinin-(48-56)-peptide as predicted from the nucleotide sequence of cloned DNA complementary to human beta-preprotachykinin mRNA. By using this antiserum in radioimmunoassay, a single immunoreactive peptide was identified in an extract of a human pheochromocytoma that produced substance P and neurokinin A. Partial microsequencing and determination of the amino acid composition of the peptide indicated identity with preprotachykinin-(20-56)-peptide. Thus the data demonstrate that the Ala19-Glu20 bond in preprotachykinin is the site of cleavage of the signal peptide.  相似文献   

2.
Neuropeptide K-(1-24)-peptide: storage and release by carcinoid tumors   总被引:1,自引:0,他引:1  
An antiserum directed against the COOH-terminal region of neuropeptide K-(1-24)-peptide that shows only 0.5% reactivity with neuropeptide K has been used in radioimmunoassay to study the posttranslation processing of human beta-preprotachykinin. A primary midgut carcinoid tumor contained high concentration of substance P (2970 pmol/g), neurokinin A (3660 pmol/g) and neuropeptide K-(1-24)-peptide (3430 pmol/g) but only a very low concentration (less than 5 pmol/g) of intact neuropeptide K. Neuropeptide K-(1-24)-peptide was also detected in extracts of metastatic tumor tissue from four patients with midgut carcinoid tumors. The amino acid sequence of tumor neuropeptide K-(1-24)-peptide was identical to that predicted from the nucleotide sequence of a human beta-preprotachykinin cDNA. The fasting plasma concentration of neuropeptide K-(1-24)-peptide was elevated in a patient with the carcinoid syndrome (821 fmol/ml compared with less than 18 fmol/ml in healthy subjects) and rose approximately 2-fold after intravenous pentagastrin. The study has demonstrated that the Lys25-Arg26 bond in neuropeptide K (corresponding to Lys96-Arg97 in the precursor) is an important processing site in human beta-preprotachykinin.  相似文献   

3.
The nucleotide sequence of cDNA encoding the human substance P precursor, beta-preprotachykinin (beta-PPT), has been determined. The source of mRNA was a human laryngeal carcinoid tumour that contained a high concentration of immunoreactive substance P. The human beta-PPT polypeptide is 129 amino acids long and contains regions encoding substance P and neurokinin A, each flanked by basic amino acid residues. Residues 72-107 of the human beta-PPT polypeptide encode the sequence of neuropeptide K, an N-terminally extended form of neurokinin A recently isolated from porcine brain.  相似文献   

4.
Sequence analysis of cDNAs has shown that the biosynthetic precursors of substance P (alpha-, beta-, and gamma-preprotachykinins) contain a common amino acid sequence in the C-terminal flanking region that has not been conserved between species. Antisera have been raised against the synthetic peptide Tyr-Glu-Arg-Ser-Ala-Met-Gln-Asn-Tyr-Glu, which represents rat beta-preprotachykinin-(117-126)-peptide, and used in radioimmunoassays. Antiserum R50 reacted strongly with C-flanking peptides in extracts of rat and bovine tissues whereas antiserum GP-4 reacted only with the rat peptides. The primary structure of the predominant molecular form of preprotachykinin C-flanking peptide in an extract of bovine corpus striatum was established as: Ala-Leu-Asn-Ser-Val5-Ala-Tyr-Glu-Arg-Ser10-Val-Met-Gln-Asp-Tyr1 5-Glu. This sequence represents beta-preprotachykinin-(111-126)-peptide which is equivalent to gamma-preprotachykinin-(96-111)-peptide. A C-flanking peptide with similar chromatographic properties was identified in extracts of rat brain and gut together with a second immunoreactive component that may represent a fragment or a posttranslationally modified variant. A peptide corresponding to the 37-amino-acid residue C-flanking peptide derived from alpha-preprotachykinin was not detected in the extracts as expected from the known low abundance of alpha-preprotachykinin mRNA in rat brain and gut.  相似文献   

5.
The sequence of the mRNA for the rat substance P precursor (preprotachykinin A) has been elucidated by molecular cloning and sequence analysis. The deduced amino acid sequence of rat preprotachykinin A indicates that it contains both substance P and substance K but differs in the sequence organization from either bovine alpha- or beta-preprotachykinin A reported previously. The existence of the bovine mRNA for the third preprotachykinin A has thus been examined and evidenced by the isolation of the corresponding cDNA clone. This mRNA, named gamma-preprotachykinin A mRNA, deletes the sequence precisely corresponding to the exon 4 sequence of the preprotachykinin A gene. Thus, alternative RNA splicing in the expression of the single preprotachykinin A gene results in the generation of three different forms of the preprotachykinin A mRNAs.  相似文献   

6.
The rat preprotachykinin I gene mRNA is alternatively spliced to yield three different mRNA species differing in their protein coding regions. We have produced recombinant vaccinia viruses expressing alpha-, beta-, and gamma-preprotachykinin to examine the tachykinin-related peptides produced upon post-translational processing of each individual precursor. Infection of BSC-40 or AtT-20 cell lines with a beta-preprotachykinin-encoding vaccinia virus recombinant results in the expression of the precursor protein. The pro-form (signal peptide removed) can be immunoprecipitated from extracts of infected cells. Infected cells of both types secrete into the culture medium a product(s) which reacts in radioimmunoassay with an antiserum shown to recognize precursor as well as mature substance P. Infected AtT-20, but not BSC-40, cells secrete into the culture medium a processed form(s) of beta-preprotachykinin which reacts in radioimmunoassay with an anti-serum which recognizes the amidated carboxyl terminus of substance P. The molecular nature of the tachykinin products produced in and secreted from AtT-20 cells infected with alpha-, beta-, and gamma-preprotachykinin-encoding recombinants was analyzed by combined high performance liquid chromatography and radioimmunoassay. Peptides were identified based on comigration with synthetic standards and antisera cross-reactivity. We determined that alpha-preprotachykinin is processed to the mature undecapeptide, substance P. beta-Preprotachykinin was processed into multiple products, including substance P, neurokinin A, neurokinin A(3-10), and neuropeptide K. gamma-Preprotachykinin was processed into substance P, neurokinin A, neurokinin A(3-10), and neuropeptide gamma. These five tachykinin peptide products were all routed through the regulated secretory pathway and were secreted into the medium in a cAMP-stimulatable fashion. Since all of these peptides have been shown to be biologically active, it is important to consider the biological consequences of their co-secretion in vivo.  相似文献   

7.
Scyliorhinin I and II: two novel tachykinins from dogfish gut   总被引:7,自引:0,他引:7  
Two peptides with tachykinin-like ability to contract longitudinal muscle from the guinea pig ileum were isolated from the intestine of the common dogfish, Scyliorhinus caniculus. The amino acid sequence of scyliorhinin I was established as Ala-Lys-Phe-Asp-Lys-Phe-Tyr-Gly-Leu-Met-NH2 and this peptide cross-reacted with antisera directed against the C-terminal region fo substance P. The amino acid sequence of scyliorhinin II was established as Ser-Pro-Ser-Asn-Ser-Lys-Cys-Pro-Asp-Gly-Pro-Asp-Cys-Phe-Val-Gly-Leu-Met- NH2 and this peptide cross-reacted with antisera directed against the C-terminal region of neurokinin A. The mammalian peptides substance P and neurokinin A were absent from the dogfish intestinal tissue.  相似文献   

8.
9.
R Kage  J M Conlon 《Peptides》1989,10(3):713-716
An N-terminally directed antiserum to neurokinin B was raised in rabbits using an immunogen prepared by coupling the free-SH group of neurokinin B extended from its C-terminus by a cysteine residue (NKB-Cys) to an -NH2 group on human serum albumin using a heterobifunctional cross-linking reagent. In radioimmunoassay with 125I-Bolton-Hunter-labelled NKB-Cys as tracer, the antiserum showed no cross-reactivity with other tachykinins. An extract of a human pheochromocytoma, previously shown to contain peptides derived from preprotachykinin A, contained NKB-LI (13 pmol/g wet weight). The retention time of tumor neurokinin on reversed-phase HPLC was the same as that of synthetic neurokinin B. Peptides with the retention times of substance P, neurokinin A, neurokinin A (3-10)-peptide and neuropeptide K were also identified in the tumor extract. NKB-LI was not detected in extracts of a further nine pheochromocytomas or in five carcinoid tumors that expressed the preprotachykinin A gene.  相似文献   

10.
T M Fong  H Yu  R R Huang  C D Strader 《Biochemistry》1992,31(47):11806-11811
The neurokinin-1 receptor binds neurokinin peptides with the potency order of substance P > substance K > neurokinin B. Elucidating the molecular basis of differential peptide selectivity will require the localization of the binding domain on the receptor. In the present report, mutagenesis and heterologous expression experiments reveal that a segment of the extracellular N-terminal sequence of the neurokinin-1 receptor is required for the high-affinity binding of substance P and related peptide agonists. Substitution of amino acid residues in the N-terminal region of the receptor affects the binding affinity of both intact peptides and a C-terminal substance P "analog", but not of a nonpeptide antagonist. Glycosylation of the receptor does not change the peptide binding affinity. In addition, substitution of the valine-97 residue in the rat neurokinin-1 receptor by a glutamate residue increases the binding affinity of neurokinin B but not substance P or substance K, suggesting that the second extracellular segment is involved in peptide selectivity. These results indicate that the extracellular domains of neurokinin-1 receptor play a critical role in peptide binding.  相似文献   

11.
Amphibian tachykinin precursor   总被引:1,自引:0,他引:1  
The precursor of amphibian tachykinin has not been found although more than 30 tachykinins have been isolated from amphibians since 1964. In this report, two tachykinin-like peptides are identified from the skin secretions of the frog, Odorrana grahami. Their amino acid sequences are DDTEDLANKFIGLM-NH(2) (named tachykinin OG1) and DDASDRAKKFYGLM-NH(2) that is the same with ranamargarin found in Rana margaretae, respectively, with a conserved FXGLM-NH(2) C-terminal consensus motif. By cDNA cloning, their precursors were screened from the skin cDNA library of O. grahami. The precursors are composed of 61 amino acid (aa) residues including a signal peptide followed by an acidic spacer peptide and one copy of mature tachykinin-like peptide. Their overall structure is different from structures of other tachykinin precursors such as human protachykinin 1 precursor containing 143 aa including one copy of substance P (SP) and neurokinin A (NKA), and ascidian tachykinin 1 precursor containing 164 aa including two copies of tachykinin-like peptides. The current results demonstrate that the biosynthesis mode of tachykinins in amphibians is different from other animals.  相似文献   

12.
We isolated human brain natriuretic peptide (human BNP) from the human atrium. Sequence analysis has revealed that it is a 32-amino-acid peptide with the sequence S-P-K-M-V-Q-G-S-G-C-F-G-R-K-M-D-R-I-S-S-S-S-G-L-G-C-K-V-L-R-R-H, which is identical to the C-terminal sequence (77-108) of the human BNP precursor deduced from the cDNA sequence. The sequence of human BNP (77-108) is preceded by Pro75-Arg76 in the human BNP precursor, which is the same processing signal as Pro97-Arg98 of the precursor of atrial natriuretic peptide (ANP). The processing of the BNP precursor occurs in the cardiocyte, although that of the ANP precursor in the cardiocyte is unclear at present.  相似文献   

13.
E Munekata  K Kubo  H Tanaka  F Osakada 《Peptides》1987,8(1):169-173
Diverse C-terminal heptapeptide derivatives related to substance P, kassinin, physalaemin, neurokinin A and B were synthesized and the contracting activities on the guinea pig ileum as well as rat duodenum were compared. In the partial sequence of C-terminal of tachykinin peptides, -I-II-Phe-III-Gly-Leu-Met-NH2, the combination of amino acid residues at positions I and III have significant roles in contraction of smooth muscle. For the activation of rat duodenal muscle (SP-E), Asp(I) and aliphatic amino acid(III), and for guinea pig ileal muscle(SP-P), Gln(I) and aromatic amino acid(III) are essential. Moreover, guinea pig ileum is sensitive to a full sequence of neurokinin peptides.  相似文献   

14.
The neurokinin A-like immunoreactivity in an extract of rabbit small intestine was resolved into two molecular forms by gel permeation chromatography. These components were purified to apparent homogeneity by reverse-phase HPLC. The primary structure of the larger component was established as the following: Asp-Ala-Gly-His-Gly-Gln-Ile-Ser-His-Lys-Arg-His-Lys-Thr-Asp-Ser-Phe-Val- Gly-Leu - Met.NH2. This amino acid sequence represents residues (72-92) of gamma-preprotachykinin, as predicted from the nucleotide sequence of a cloned cDNA from the rat. The peptide, termed neuropeptide-gamma, lacks residues (3-17) of neuropeptide K, and this segment is specified exactly by exon 4 in the preprotachykinin gene. The smaller form of neurokinin A-like immunoreactivity was identical to neurokinin A. Neuropeptide K was not present in the extract, demonstrating that the pathways of post-translational processing of beta- and gamma-preprotachykinins in the rabbit gut are different.  相似文献   

15.
The tachykinins (TKs) substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) have conserved C-terminal sequences and mediate similar physiological responses by activating neurokinin receptors found on neural and smooth muscle cells. Many enteric nerves express preprotachykinin A (PPT A) mRNA and synthesize SP and NKA. However, it is unclear if NKB is synthesized in enteric neurons as many antibodies developed against NKB also recognize other TKs. Therefore, the cellular distribution of NKB-like-immunoreactivity (NKB-ir) in rat ileum was examined using selective antisera raised against either synthetic Cys10-NKB or peptide 2 (P2), a non-tachykinergic peptide sequence in NKB precursor protein. NKB-ir and P2-ir had a similar distribution in varicose nerve fibers in submucosal and myenteric ganglia and almost all ganglia contained immunoreactive nerves. Few submucosal or myenteric neuronal somata contained strong immunoreactivity. Preabsorption of NKB or P2 antisera with their respective cognate peptides, but not with other TK peptides, abolished specific immunostaining. Finally, co-localization of NKB-/P2-ir with SP-ir suggested that most NKB-/P2-ir nerve fibers contain SP-ir, but some SP-ir nerves do not contain detectable NKB-/P2-ir. These results indicate that PPT B products P2 and NKB are localized in a subpopulation of enteric nerves containing TKs encoded by PPT A. Stimulation of these nerves may release NKB to activate local neurokinin receptors.  相似文献   

16.
An extract of the brain of the rainbow trout, Oncorhynchus mykiss contained high concentrations of both neurokinin A-like immunoreactivity (corresponding to 90 pmol mammalian neurokinin A/g wet tissue) and substance-P-like immunoreactivity (corresponding to 50 pmol mammalian substance P/g wet tissue) measured by radioimmunoassay using antisera directed against the C-terminal regions of the mammalian peptides. In contrast, an extract of the Atlantic cod. Gadus morhua contained only neurokinin-A-like immunoreactivity (151 pmol/g). This apparent paradox was resolved by determination of the primary structures of the fish tachykinins. Trout substance P (Lys-Pro-Arg-Pro-His-Gln-Phe-Phe-Gly-Leu-MetNH2) has the same amino acid sequence in its C-terminal region as that in the corresponding region of mammalian substance P. Cod substance P (Lys-Pro-Arg-Pro-Gln-Gln-Phe-Ile-Gly-Leu-MetNH2), however, contains a substitution at position 8 (Phe----Ile) that abolishes reactivity with the antiserum to substance P but permits reactivity with the antiserum to neurokinin A. The amino acid sequence of cod and trout neurokinin A is the same (His-Lys-Ile-Asn-Ser-Phe-Val-Gly-Leu-MetNH2) and shows two substitutions (Thr3----Ile and Asp4----Asn) compared with mammalian neurokinin A. The data indicate that nervous tissue of teleost fish contain tachykinins that are analogous to the peptides found in mammalian tissues.  相似文献   

17.
Zeng XC  Li WX  Peng F  Zhu ZH 《IUBMB life》2000,49(3):207-210
Based on the amino acid sequence of a bradykinin-potentiating peptide (Bpp) (peptide K-12) from scorpion Buthus occitanus, a full-length cDNA sequence encoding the precursor of a novel venom peptide (named BmKbpp) related to this Bpp, has been isolated and analyzed. The cDNA encodes a precursor of 72 amino acid residues, including a signal peptide of 22 residues and an extra Arg-Arg-Arg tail at the C-terminal end of the precursor, which have to be removed in the processing step. The C-terminal region (21 residues) of the precursor is homologous (57% identical) with the sequence of peptide K-12. Thus, according to the primary structure of the BmKbpp precursor, there may be a propeptide between the signal peptide and the putative mature BmKbpp at the C-terminal region of the precursor.  相似文献   

18.
The tachykinins comprise a family of closely related peptides that participate in the regulation of diverse biological processes. The tachykinin peptides substance P, neurokinin A, neurokinin A(3-10), neuropeptide K, and neuropeptide gamma are produced from a single preprotachykinin gene as a result of differential RNA splicing and differential posttranslational processing. Another tachykinin, neurokinin B, is produced from a separate preprotachykinin gene. These preprotachykinin mRNAs and peptide products are differentially distributed throughout the nervous system. Three distinct G protein-coupled tachykinin receptors exist for these tachykinin peptides. The three receptors interact differentially with the tachykinin peptides and are uniquely distributed throughout the nervous system. The NK-1 receptor preferentially interacts with substance P, the NK-2 receptor prefers neurokinin A, neuropeptide K, and neuropeptide gamma, and the NK-3 receptor interacts best with neurokinin B. Examples of the roles of tachykinin peptidergic neuronal systems are taken from the spinal cord sensory system and the nigrostriatal extrapyramidal motor system. Analysis of the functional significance of multiple tachykinin peptide systems, receptor-second messenger coupling mechanisms, and developmental and regulatory mechanisms underlying peptide mRNA and receptor expression represent areas of current and future investigation.  相似文献   

19.
An extract of the whole brain of the frog Rana ridibunda contained high concentrations of substance P-like immunoreactivity, measured with an antiserum directed against the COOH-terminal region of mammalian substance P and neurokinin B-like immunoreactivity, measured with an antiserum directed against the NH2-terminus of neurokinin B. The primary structure of the substance P-related peptide (ranakinin) was established as: Lys-Pro-Asn-Pro-Glu-Arg-Phe-Tyr-Gly-Leu-Met-NH2. Mammalian substance P was not present in the extract. The primary structure of the neurokinin B-related peptide was established as: Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2. This amino acid sequence is the same as that of mammalian neurokinin B. Ranakinin was equipotent with substance P and [Sar9,Met(O2)11]substance P in inhibiting the binding of 125I-Bolton-Hunter-[Sar9,Met(O2)11]substance P, a selective radioligand for the NK1 receptor, to binding sites in rat submandibular gland membranes (IC50 1.6 +/- 0.3 nM; n = 5). It is concluded that ranakinin is a preferred agonist for the mammalian NK1 tachykinin receptor subtype.  相似文献   

20.
Epidermin: sequencing of a heterodetic tetracyclic 21-peptide amide antibiotic   总被引:20,自引:0,他引:20  
Epidermin is a large peptide antibiotic, which is synthesized in the ribosome via a precursor protein, followed by enzymatic modifications. It was isolated from the culture filtrate of Staphylococcus epidermidis Tü 3298 by adsorption on Amberlite XAD-8. The basic heneicosapeptide amide was chromatographed on Sephadex LH-20 and purified to homogeneity via multiplicative counter-current distributions in one acidic and one neutral system. Tryptic digestion gave the soluble N-terminal fragment epidermin-(1-13)-peptide (P1) and the insoluble C-terminal fragment 2-oxobutyryl-epidermin-(15-21)-peptide amide (P2), each possessing two sulfide ring systems. The heterodetic rings consisted of meso-lanthionine and (2S,3S, 6R)-3-methyllanthionine (P1), meso-lanthionine and C-terminally the new amino acid S-(2-aminovinyl)-D-cysteine (P2). The complex sequence was elucidated via a combination of desulfurization with Raney nickel, enzymatic and acidolytic degradations, gas-phase sequencing, fast-atom bombardment and field-desorption mass spectrometry and NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号