首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
【目的】新颖结构的天然萘醌-氧吲哚类生物碱coprisidins(A和B)分离自昆虫肠道相关链霉菌,具有预防癌症的活性。作为首例具有萘醌-氧吲哚骨架的生物碱,对其独特生物合成机理的研究可为Ⅱ型聚酮类化合物生物合成途径提供新的认知。【方法】本研究对coprisidins的产生菌Streptomycessp.SNU607进行全基因组测序,并根据测序结果的生物信息学分析初步定位coprisidins的生物合成基因簇;通过基因敲除以及异源表达手段确定coprisidins的生物合成基因簇;基于体内遗传学实验与生物信息学分析初步推导coprisidins的生物合成途径。【结果】Streptomyces sp. SNU607中有23个基因簇可能参与次级代谢,其中4个基因簇与聚酮合酶(PKS)相关;通过基因敲除与异源表达实验,本研究证实1个Ⅱ型PKS负责coprisidins的生物合成;基于生物信息学分析,我们推测copH/I/M/O/N构成了1个基因盒,并负责起始单元丁酰CoA的合成;KSβ(Cop B)的序列比对表明coprisidins的Ⅱ型PKS系统更倾向于合成C20的初始聚酮链。【结论】Coprisidins的萘醌-吲哚结构是由Ⅱ型PKSs催化形成,我们推测丁酰Co A是coprisidins聚酮骨架的起始单元,在最小PKS、聚酮酶、环化酶的催化下先形成类似蒽环的四环系统,随后在后修饰酶与氧化重排的作用下生成萘醌-氧吲哚骨架。本研究为进一步探究萘醌-氧吲哚类生物碱的生物合成机制奠定了基础,同时增加了Ⅱ型PKSs合成产物的结构多样性。  相似文献   

2.
聚酮是一类结构和生物活性多样的天然产物,根据结构特点可以分为芳香聚酮和复合聚酮两大类。芳香聚酮环化酶是芳香聚酮生物合成过程中一种非常重要的早期后修饰酶,是决定芳香聚酮骨架结构的主要影响因素。根据序列和结构的相似性,芳香聚酮环化酶可以分为不同的种类。本文主要对其中3类芳香聚酮环化酶结构和功能进行了简要总结,从晶体结构、催化反应和催化机制等方面对它们进行了分类描述和功能分析,并结合自己实验室工作介绍了杰多霉素B环化酶催化机制的研究方法。  相似文献   

3.
[目的] 新颖结构的天然萘醌-氧吲哚类生物碱coprisidins(A和B)分离自昆虫肠道相关链霉菌,具有预防癌症的活性。作为首例具有萘醌-氧吲哚骨架的生物碱,对其独特生物合成机理的研究可为II型聚酮类化合物生物合成途径提供新的认知。[方法] 本研究对coprisidins的产生菌Streptomyces sp.SNU607进行全基因组测序,并根据测序结果的生物信息学分析初步定位coprisidins的生物合成基因簇;通过基因敲除以及异源表达手段确定coprisidins的生物合成基因簇;基于体内遗传学实验与生物信息学分析初步推导coprisidins的生物合成途径。[结果] Streptomyces sp.SNU607中有23个基因簇可能参与次级代谢,其中4个基因簇与聚酮合酶(PKS)相关;通过基因敲除与异源表达实验,本研究证实1个II型PKS负责coprisidins的生物合成;基于生物信息学分析,我们推测copH/I/M/O/N构成了1个基因盒,并负责起始单元丁酰CoA的合成;KSβ(CopB)的序列比对表明coprisidins的II型PKS系统更倾向于合成C20的初始聚酮链。[结论] Coprisidins的萘醌-吲哚结构是由II型PKSs催化形成,我们推测丁酰CoA是coprisidins聚酮骨架的起始单元,在最小PKS、聚酮酶、环化酶的催化下先形成类似蒽环的四环系统,随后在后修饰酶与氧化重排的作用下生成萘醌-氧吲哚骨架。本研究为进一步探究萘醌-氧吲哚类生物碱的生物合成机制奠定了基础,同时增加了II型PKSs合成产物的结构多样性。  相似文献   

4.
植物Ⅲ型聚酮合酶(Polyketide synthases,PKSs)催化形成一系列结构迥异、生理活性不同的聚酮类化合物的基本骨架结构,是聚酮类化合物生物合成途径的关键酶。目前已从植物中克隆和鉴定了多种功能不同的Ⅲ型PKSs。定点突变技术是研究蛋白质结构与功能之间复杂关系的重要方法。文中综述了近年来基于定点突变的植物Ⅲ型PKSs结构与功能关系的研究进展,包括利用定点突变技术修饰各种可能影响植物Ⅲ型PKSs结构的氨基酸残基,来研究其对功能的影响(如控制起始底物的特异性、缩合反应次数以及中间产物环化方式),以期为植物Ⅲ型PKSs结构与功能关系的研究提供参考。  相似文献   

5.
苯并异色烷醌(benzoisochromanequinones,BIQs)家族抗生素是由链霉菌产生的聚酮类抗生素,其芳香聚酮母核结构中含有并联的两个芳香环和一个吡喃环,具有抗菌、抗肿瘤等多种生物学活性。BIQ抗生素聚酮链的早期生物合成过程代表了芳香聚酮抗生素母核的典型合成机制,而不同的后期修饰则决定了它们结构和生物学活性的多样性。在过去的二十几年中,以放线紫红素和美达霉素为研究重点,BIQ家族抗生素的生物合成机制逐渐得到揭示,但在后期结构修饰方面仍有许多问题有待解决。本文对BIQ家族抗生素的生物合成机制研究进行了综述,比较了不同BIQ家族抗生素结构特点、生物学活性,并重点阐述了它们生物合成中的后期结构修饰和调控过程的研究进展,并对BIQ抗生素在代谢工程方面的研究进行了展望。  相似文献   

6.
真菌聚酮合酶-非核糖体多肽合成酶(PKS-NRPS)由于聚合两大主要催化模块PKS与NRPS,能够催化结合来源广泛的聚酮骨架和氨基酸生成结构丰富多样和生物活性广泛的天然产物.本文对2013年至2019年4月真菌来源的14个PKS-NRPS基因及其对应的72个PKS-NRPS杂合天然产物的化学结构、生物活性及生物合成进行总结和论述,并对目前为止报道的所有26个PKS-NRPS基因的同源性及与化合物结构之间的相关性进行分析和讨论,为真菌PKS-NRPS类天然产物及其生物合成研究提供参考.  相似文献   

7.
【目的】从菌株Streptomyces albus DSM 41398的发酵产物中发掘结构多样的由I型聚酮合酶催化形成的化合物,以期找到具有新颖结构或强生物活性的化合物。在结构鉴定的基础上,对其生物合成途径进行分析。【方法】利用HPLC分析方法,通过系统比较野生型菌株S.albus DSM 41398与I型聚酮合酶编码基因簇失活突变株的发酵产物差异,实现目标化合物的定向分离。然后,利用~1H-和~(13)C-NMR以及HR-ESI-MS进行化合物的结构鉴定。最后,利用生物信息学等方法对化合物的生物合成途径进行推测和分析。【结果】从5 L的S.albus DSM 41398发酵产物中,分离得到了2个具有抗肿瘤活性的聚酮类化合物放线吡喃酮和洋橄榄菌素,分别定位了它们的生物合成基因簇,并分别对其生物合成途径进行了推导。其中,放线吡喃酮的生物合成基因簇为首次报道。【结论】本研究一方面为基因组发掘S.albus DSM 41398中其他由I型聚酮合酶催化形成的化合物提供参考,另一方面也为相关化合物的结构修饰改造奠定了良好的基础。  相似文献   

8.
醌那霉素是由Ⅱ型聚酮合酶系统产生的一类角蒽环类聚酮化合物。从结构上看,其具有三个显著的特征:苯并芴核、高度氧化的A环以及芴环上的重氮基团。醌那霉素因其特殊的苯并芴结构以及良好的生物活性,引起了科研人员广泛的研究兴趣。但是迄今醌那霉素的生物合成途径并没有得到完全的解析,尤其是对重氮基团的形成。前期研究因缺少醌那霉素完整的生物合成基因簇信息而受到阻碍。本课题组最近确证了醌那霉素的完整生物合成基因簇,共包含62个基因,其中有8个基因并没有被报道过。通过生物信息学分析,本研究发现其中alp2F和alp2G基因与cremeomycin生物合成中的creE和creD具有高度的同源性。creE和creD基因产物通过催化天冬氨酸生成亚硝酸,其后亚硝酸在酸性条件下自发加载到化合物的碳骨架上,实现重氮基团的加载。本研究通过体外酶催化反应证实了Alp2F和Alp2G同样可以催化天冬氨酸生成亚硝酸。亚硝酸钠喂养实验进一步确证了亚硝酸盐参与醌那霉素的合成。alp2F和alp2G基因功能体外和体内的确证,不仅是对醌那霉素生物合成基因簇中未知基因功能的表征,也对阐明醌那霉素家族天然产物中重氮基团的形成有启发意义。  相似文献   

9.
植物聚酮类化合物主要包括酚类、芪类及类黄酮化合物等,在植物花色、防止紫外线伤害、预防病原菌、昆虫危害以及作为植物与环境互作信号分子方面行使着重要的生物学功能。该类化合物具有显著多样的生物学活性,对人体保健及疾病治疗有显著意义。植物类型Ⅲ聚酮化合物合酶(PKS)在该类化合物生物合成起始反应中行使着关键作用,决定该类化合物基本分子骨架建成和代谢途径碳硫走向,为合成途径关键酶和限速酶。以查尔酮合酶为原型酶的植物类型Ⅲ PKS超家族是研究系统进化和蛋白结构与功能关系的模式分子家族,目前已经分离得到14种植物类型Ⅲ PKS基因,这些同祖同源基因及其表达产物既有共性,也表现出许多独特个性,这些个性赋予此类次生代谢产物结构上的多样性。以下综述了植物类型Ⅲ PKS超家族基因结构、功能及代谢产物研究进展。  相似文献   

10.
植物聚酮类化合物主要包括酚类、芪类及类黄酮化合物等,在植物花色、防止紫外线伤害、预防病原菌、昆虫危害以及作为植物与环境互作信号分子方面行使着重要的生物学功能。该类化合物具有显著多样的生物学活性,对人体保健及疾病治疗有显著意义。植物类型III 聚酮化合物合酶 (PKS) 在该类化合物生物合成起始反应中行使着关键作用,决定该类化合物基本分子骨架建成和代谢途径碳硫走向,为合成途径关键酶和限速酶。以查尔酮合酶为原型酶的植物类型III PKS超家族是研究系统进化和蛋白结构与功能关系的模式分子家族,目前已经分离得到14种植物类型III PKS基因,这些同祖同源基因及其表达产物既有共性,也表现出许多独特个性,这些个性赋予此类次生代谢产物结构上的多样性。以下综述了植物类型III PKS超家族基因结构、功能及代谢产物研究进展。  相似文献   

11.
氧化酶在芳香聚酮生物合成后修饰中普遍存在并对终产物的结构产生关键影响。本文简要总结了芳香聚酮后修饰氧化酶中几类最常见的氧化酶的结构和功能,并以杰多霉素生物合成途径中的后修饰氧化酶为例,阐明这些氧化酶在后修饰反应中发生作用的方式。并对后修饰氧化酶在组合生物学中的应用做了展望。  相似文献   

12.
A novel angucycline metabolite, 2,3-dehydro-UWM6, was identified in a jadH mutant of Streptomyces venezuelae ISP5230. Both UWM6 and 2,3-dehydro-UWM6 could be converted to jadomycin A or B by a ketosynthase alpha (jadA) mutant of S. venezuelae. These angucycline intermediates were also converted to jadomycin A by transformant of the heterologous host Streptomyces lividans expressing the jadFGH oxygenases in vivo and by its cell-free extracts in vitro; thus the three gene products JadFGH are implicated in catalysis of the post-polyketide synthase biosynthetic reactions converting UWM6 to jadomycin aglycone. Genetic and biochemical analyses indicate that JadH possesses dehydrase activity, not previously associated with polyketide-modifying oxygenase. Since the formation of aromatic polyketides often requires multiple dehydration steps, bifunctionality of oxygenases modifying aromatic polyketides may be a general phenomenon.  相似文献   

13.
Fungal aromatic polyketides constitute a large family of bioactive natural products and are synthesized by the non-reducing group of iterative polyketide synthases (PKSs). Their diverse structures arise from selective enzymatic modifications of reactive, enzyme-bound poly-β-keto intermediates. How iterative PKSs control starter unit selection, polyketide chain initiation and elongation, intermediate folding and cyclization, selective redox or modification reactions during assembly, and product release are central mechanistic questions underlying iterative catalysis. This Review highlights recent insights into these questions, with a particular focus on the biosynthetic programming of fungal aromatic polyketides, and draws comparisons with the allied biosynthetic processes in bacteria.  相似文献   

14.
Polyketides constitute a large family of natural products that display various biological activities. Polyketides exhibit a high degree of structural diversity, although they are synthesized from simple acyl building blocks. Recent biochemical and structural studies provide a better understanding of the biosynthetic logic of polyketide diversity. This review highlights the biosynthetic mechanisms of structurally unique polyketides, β-amino acid-containing macrolactams, enterocin, and phenolic lipids. Functional and structural studies of macrolactam biosynthetic enzymes have revealed the unique biosynthetic machinery used for selective incorporation of a rare β-amino acid starter unit into the polyketide skeleton. Biochemical and structural studies of cyclization enzymes involved in the biosynthesis of enterocin and phenolic lipids provide mechanistic insights into how these enzymes diversify the carbon skeletons of their products.  相似文献   

15.
Plant cytochromes P450 (P450s) participate in a variety of biochemical pathways to produce a vast diversity of plant natural products. The number of P450 genes in plant genomes is estimated to be up to 1% of the total gene annotations of each plant species, implying that plants are huge sources for various P450-dependent reactions. Plant P450s catalyze a wide variety of monooxygenation/hydroxylation reactions in secondary metabolism, and some of them are involved in unusual reactions such as methylenedioxy-bridge formation, phenol coupling reactions, oxidative rearrangement of carbon skeletons, and oxidative C–C bond cleavage. Here, we summarize unusual P450 reactions in various plant secondary metabolisms, and describe their proposed reaction mechanisms.  相似文献   

16.
On the origins of triterpenoid skeletal diversity   总被引:1,自引:0,他引:1  
Xu R  Fazio GC  Matsuda SP 《Phytochemistry》2004,65(3):261-291
The triterpenoids are a large group of natural products derived from C(30) precursors. Nearly 200 different triterpene skeletons are known from natural sources or enzymatic reactions that are structurally consistent with being cyclization products of squalene, oxidosqualene, or bis-oxidosqualene. This review categorizes each of these structures and provides mechanisms for their formation.  相似文献   

17.
Hydroxylation of the benzoic ring by non-heme iron oxygenases having a Rieske-type cluster is the key step in the aerobic degradation of chloroaromatic compounds by bacteria. Rieske oxygenases (RO) catalyze the oxidative decarboxylation reaction unique to the enzymes of this family with the formation of corresponding phenolic compounds. This review discusses the general structure, function, and classification of ROs that catalyze the oxidation of chlorophenoxyacetic acids; genes encoding the ROs with their phylogenetic classes are also reviewed.  相似文献   

18.
Whereas the majority of O2-metabolizing enzymes depend on transition metal ions or organic cofactors for catalysis, a significant number of oxygenases and oxidases neither contain nor require any cofactor. Among the cofactor-independent oxidases, urate oxidase, coproporphyrinogen oxidase, and formylglycine-generating enzyme are of mechanistic as well as medical interest. Formylglycine-generating enzyme is also a promising tool for protein engineering as it can be used to equip proteins with a reactive aldehyde function. PqqC, an oxidase in the biosynthesis of the bacterial cofactor pyrroloquinoline quinone, catalyzes an eight-electron ring-closure oxidation reaction. Among bacterial oxygenases, quinone-forming monooxygenases involved in the tailoring of polyketides, the dioxygenase DpgC found in the biosynthesis of a building block of vancomycin and teicoplanin antibiotics, luciferase monooxygenase from Renilla sp., and bacterial ring-cleaving 2,4-dioxygenases active towards 3-hydroxy-4(1H)-quinolones have been identified as cofactor-independent enzymes. Interestingly, the 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases as well as Renilla luciferase use an α/β-hydrolase architecture for oxygenation reactions. Cofactor-independent oxygenases and oxidases catalyze very different reactions and belong to several different protein families, reflecting their diverse origin. Nevertheless, they all may share the common mechanistic concept of initial base-catalyzed activation of their organic substrate and “substrate-assisted catalysis.”  相似文献   

19.
Aromatic polyketides are secondary metabolites widely found in bacteria, fungi, and plants, which are well-known for their diverse chemical structures and biological functions. The structural diversity of aromatic polyketides arises from a series of enzymatic modifications of the linear poly-β-ketone intermediates during biosynthesis. Their versatile bioactivities are exemplified by reports of their use as antibacterials, antifungals, antivirals, and antiparasitics. Despite many reports on the antimicrobial nature of aromatic polyketides, their potential use as plant disease control agents has still not been systematically explored and discussed. This review highlights examples of the use of aromatic polyketides as plant disease control agents and discusses their function and merits as agrochemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号