首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ceIV1 gene encoding a secreted cellulase (CelV1) of Erwinia carotovora subsp. carotovora SCC3193 was cloned and its nucleotide sequence determined. The gene contains an open reading frame of 1511 by and codes for an exported protein of 504 amino acids. The predicted amino acid sequence of Ce1V1 was highly similar to that of CeIV of another E. c. subsp. carotovora strain SCRI193 but completely different from the previously characterized cellulase, CelS, of the strain SCC3193. Gene fusions to the lacZ reporter were employed to characterize the regulation of celV1 and celS. Both genes are coordinately induced in a growth phase-dependent manner and are catabolite repressed. Expression of celV1 but not celS was stimulated by plant extracts. The celS gene was expressed at a much lower level than celV1 under all conditions tested. Inactivation of the celV1 gene in E. c. subsp. carotovora strain SCC3193 by marker exchange showed that celV1 encodes the major cellulase of strain SCC3193, as the resulting mutant strain SCC6001 was devoid of cellulase activity. Ce1Vl mutants exhibited reduced virulence suggesting that CelV1, although not absolutely required for pathogenicity, enhances the ability of strain SCC3193 to macerate plant tissue. Inactivation of the celS gene in the celV1 mutant did not lead to any further decrease in virulence.  相似文献   

2.
3.
Pectin lyase (PNL) and the bacteriocin carotovoricin (CTV) were induced in Erwinia carotovora subsp. carotovora 71 by the DNA-damaging agents mitomycin C, nalidixic acid, and UV light. To determine whether the recA product was involved in the expression of these damage-inducible phenotypes, we cloned the E. carotovora subsp. carotovora recA+ gene, inactivated it by Tn5 insertion, and constructed an E. carotovora subsp. carotovora recA::Tn5 strain by gene replacement via homologous recombination. The RecA- strain was more sensitive to methyl methanesulfonate, nitroquinoline oxide, and UV light than its RecA+ parent. The recA mutation did not affect the production of pectate lyase, polygalacturonase, cellulase, and protease or the ability to cause soft rot of potato tubers. With this mutant, unlike with the RecA+ parent strain, PNL and CTV were not induced by mitomycin C or detected in potato tuber tissue. The RecA+ phenotype, including the inducibility of PNL and CTV, could, however, be restored in the mutant in trans by the recA+ gene from either E. carotovora subsp. carotovora or Escherichia coli. We conclude that, in E. carotovora subsp. carotovora, the recA product is required in the induction of PNL and CTV.  相似文献   

4.
5.
6.
Quorum sensing, the population density-dependent regulation mediated by N-acylhomoserine lactones (AHSL), is essential for the control of virulence in the plant pathogen Erwinia carotovora ssp. carotovora (Ecc). In Erwinia carotovora ssp. the AHSL signal with an acyl chain of either 6 or 8 carbons is generated by an AHSL synthase, the expI gene product. This work demonstrates that the AHSL receptor, ExpR1, of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. We have also identified a second AHSL receptor (ExpR2) and demonstrate a novel quorum sensing mechanism, where ExpR2 acts synergistically with the previously described ExpR1 to repress virulence gene expression in Ecc. We show that this repression is released by addition of AHSLs and appears to be largely mediated via the negative regulator RsmA. Additionally we show that ExpR2 has the novel property to sense AHSLs with different acyl chain lengths. The expI expR1 double mutant is able to act in response to a number of different AHSLs, while the expI expR2 double mutant can only respond to the cognate signal of Ecc strain SCC3193. These results suggest that Ecc is able to react both to the cognate AHSL signal and the signals produced by other bacterial species.  相似文献   

7.
8.
The ceIV1 gene encoding a secreted cellulase (CelV1) of Erwinia carotovora subsp. carotovora SCC3193 was cloned and its nucleotide sequence determined. The gene contains an open reading frame of 1511 by and codes for an exported protein of 504 amino acids. The predicted amino acid sequence of Ce1V1 was highly similar to that of CeIV of another E. c. subsp. carotovora strain SCRI193 but completely different from the previously characterized cellulase, CelS, of the strain SCC3193. Gene fusions to the lacZ reporter were employed to characterize the regulation of celV1 and celS. Both genes are coordinately induced in a growth phase-dependent manner and are catabolite repressed. Expression of celV1 but not celS was stimulated by plant extracts. The celS gene was expressed at a much lower level than celV1 under all conditions tested. Inactivation of the celV1 gene in E. c. subsp. carotovora strain SCC3193 by marker exchange showed that celV1 encodes the major cellulase of strain SCC3193, as the resulting mutant strain SCC6001 was devoid of cellulase activity. Ce1Vl mutants exhibited reduced virulence suggesting that CelV1, although not absolutely required for pathogenicity, enhances the ability of strain SCC3193 to macerate plant tissue. Inactivation of the celS gene in the celV1 mutant did not lead to any further decrease in virulence.  相似文献   

9.
Seven new genes controlled by the quorum-sensing signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) have been identified in Erwinia carotovora subsp. carotovora. Using TnphoA as a mutagen, we enriched for mutants defective in proteins that could play a role in the interaction between E. carotovora subsp. carotovora and its plant hosts, and identified NipEcc and its counterpart in E. carotovora subsp. atroseptica. These are members of a growing family of proteins related to Nep1 from Fusarium oxysporum which can induce necrotic responses in a variety of dicotyledonous plants. NipEcc produced necrosis in tobacco, NipEca affected potato stem rot, and both affected virulence in potato tubers. In E. carotovora subsp. carotovora, nip was shown to be subject to weak repression by the LuxR family regulator, EccR, and may be regulated by the negative global regulator RsmA.  相似文献   

10.
The main virulence factors of Erwinia carotovora subsp. carotovora, the secreted, extracellular cell-wall-degrading enzymes, are controlled by several regulatory mechanisms. We have isolated transposon mutants with reduced virulence on tobacco. One of these mutants, with a mutation in a gene designated expM, was characterized in this study. This mutant produces slightly reduced amounts of extracellular enzymes in vitro and the secretion of the enzymes is also affected. The expM wild-type allele was cloned together with an upstream gene, designated expL, that has an unknown function. The expM gene was sequenced and found to encode a protein with similarity to the RssB/SprE protein of Escherichia coli and the MviA protein of Salmonella typhimurium. These proteins belong to a new type of two-component response regulators that negatively regulate the stability of the Sigma factor RpoS (sigma s) at the protein level. The results of this study suggest that ExpM has a similar function in E. carotovora subsp. carotovora. We also provide evidence that the overproduction of RpoS in the expM mutant is an important factor for the reduced virulence phenotype and that it partly causes the observed phenotype seen in vitro. However, an expM/rpoS double mutant is still affected in secretion of extracellular enzymes, suggesting that ExpM in addition to RpoS also acts on other targets.  相似文献   

11.
12.
The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (clusters 1 to 4) resulted. Cluster 1 contained Erwinia carotovora subsp. carotovora (subclusters 1a and 1b) and Erwinia carotovora subsp. odorifera (subcluster 1c) strains, while cluster 2 contained Erwinia carotovora subsp. atroseptica (subcluster 2a) and Erwinia carotovora subsp. betavasculorum (subcluster 2b) strains. Clusters 3 and 4 contained Erwinia carotovora subsp. wasabiae and E. chrysanthemi strains, respectively. While E. carotovora subsp. carotovora and E. chrysanthemi showed a high level of molecular diversity (23 to 38% mean similarity), E. carotovora subsp. odorifera, E. carotovora subsp. betavasculorum, E. carotovora subsp. atroseptica, and E. carotovora subsp. wasabiae showed considerably less (56 to 76% mean similarity), which may reflect their limited geographical distributions and/or host ranges. The species- and subspecies-specific banding profiles generated from the AFLPs allowed rapid identification of unknown isolates and the potential for future development of diagnostics. AFLP fingerprinting was also found to be more differentiating than other techniques for typing the soft rot erwinias and was applicable to all strain types, including different serogroups.  相似文献   

13.
AIMS: To determine the characteristics of bacteria associated with the blackleg disease of potato in Brazil and compare them with species and subspecies of pectolytic Erwinia. METHODS AND RESULTS: Biochemical and physiological characteristics of 16 strains from blackleg-infected potatoes in State of Rio Grande do Sul, Brazil, were determined and differentiated them from all the E. carotovora subspecies and E. chrysanthemi. Pathogenicity and maceration ability of the Brazilian strains were greater than those of E. carotovora subsp. atroseptica, the causal agent of potato blackleg in temperate zones. Analyses of serological reaction and fatty acid composition confirmed that the Brazilian strains differed from E. carotovora subsp. atroseptica, but the sequence of 16S rDNA gene and the 16S-23S intergenic spacer (IGS) region confirmed the Brazilian strains as pectolytic Erwinia. Restriction analysis of the IGS region differentiated the Brazilian strains from the subspecies of E. carotovora and from E. chrysanthemi. A unique SexAI restriction site in the IGS region was used as the basis for a primer to specifically amplify DNA from the Brazilian potato blackleg bacterium in PCR. CONCLUSIONS: The bacterium that causes the blackleg disease of potato in Brazil differs from E. carotovora subsp. atroseptica, the blackleg pathogen in temperate zones. It also differs from other subspecies of E. carotovora and from E. chrysanthemi and warrants status as a new subspecies, which would be appropriately named E. carotovora subsp. brasiliensis. SIGNIFICANCE AND IMPACT OF THE STUDY: The blackleg disease of potato is caused by a different strain of pectolytic Erwinia in Brazil than in temperate potato-growing regions. The Brazilian strain is more virulent than E. carotovora subsp. atroseptica, the usual causal agent of potato blackleg.  相似文献   

14.
15.
16.
17.
18.
The production of pectinase, the major virulence determinant of soft-rot Erwinia species, is controlled by many regulatory factors. We focused on the major regulatory proteins, KdgR, CRP, Pir, and PecS, characterized mainly in E. chrysanthemi, and tested for their presence and function in the control of pectate lyase (Pel) and polygalacturonase (Peh) production in E. carotovora subsp. carotovora. Homologues of kdgR and crp but not of pir and pecS were detected by Southern blot analyses in E. carotovora subsp. carotovora. In fact, KdgR and CRP homologues of E. carotovora subsp. carotovora had high amino acid identities to those of E. chrysanthemi, including a complete match of the hypothetical helix-turn-helix DNA-binding motif. However, in Western blot analyses using anti-Pir (E. chrysanthemi) antibodies, a cross-reacting protein was present in both Erwinia species, although Pel production in E. carotovora subsp. carotovora was not further stimulated by adding plant extract into the medium containing PGA (polygalacturonic acid) in which hyperinduction by Pir has been reported in E. chrysanthemi EC16. When plasmids that contained each of these regulatory genes from E. chrysanthemi were introduced into E. carotovora subsp. carotovora, Pel production was controlled as predicted from their roles in E. chrysanthemi, except for PecS. PecS exerted a positive control in E. carotovora subsp. carotovora, in contrast to a negative control in E. chrysanthemi. DNA-binding assays demonstrated that KdgR, CRP, Pir, and PecS of E. chrysanthemi and KdgR and CRP homologues of E. carotovora subsp. carotovora could bind to the promoter regions of pel-1, pel-3, and peh of E. carotovora subsp. carotovora. Taken together, KdgR and CRP homologues of E. carotovora subsp. carotovora may regulate Pel and Peh production as in E. chrysanthemi. However, the presence of Pir and PecS homologues in E. carotovora subsp. carotovora was not identified in this study, though these proteins of E. chrysanthemi were functional on the promoter regions of the pectinase genes of E. carotovora subsp. carotovora.  相似文献   

19.
20.
Soft-rotting Erwinia spp. export degradative enzymes to the cell exterior (Out+), a process contributing to their ability to macerate plant tissues. Transposon (Tn5, Tn10, Tn10-lacZ) insertion Out- mutants were obtained in Erwinia carotovora subsp. carotovora 71 by using plasmid and bacteriophage lambda delivery systems. In these mutants, pectate lyases, polygalacturonase, and cellulase, which are normally excreted into the growth medium, accumulated in the periplasm. However, localization of the extracellular protease was not affected. The Out- mutants were impaired in their ability to macerate potato tuber tissue. Out+ clones were identified in a cosmid library of E. carotovora subsp. carotovora 71 by their ability to complement mutants. Localization of cyclic phosphodiesterase in the periplasm indicated that the Out+ plasmids did not cause lysis or a nonspecific protein release. The Out+ derivatives of the E. carotovora subsp. carotovora 71 mutants regained the ability to macerate potato tuber tissue. Our data indicate that a cluster of several genes is required for the Out+ phenotype. While one plasmid, pAKC260, restored the Out+ phenotype in each of the 31 mutants of E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Erwinia chrysanthemi, it failed to render Escherichia coli export proficient. Homologs of E. carotovora subsp. carotovora 71 out DNA were detected by Southern hybridizations in subspecies of E. carotovora under high-stringency conditions. In contrast, E. chrysanthemi sequences bearing homology to the E. carotovora subsp. carotovora 71 out DNA were detectable only under low-stringency hybridization. Thus, although the out genes are functional in these two soft-rotting bacterial groups, the genes appear to have diverged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号