首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The underwater environment of Grotta Giusti (Monsummano Terme, Italy) is a suggestive setting with different types of speleothems including “leafy” and “cauliflower” concretions along the walls and roof, and conical pseudo-stalagmites on the floor. Very high calcium and dissolved CO2 levels, and massive calcium carbonate precipitation characterize this cave environment. Yet, life thrives on the leafy concretion surfaces with loads of cultivable heterotrophic microorganisms around 105 colony-forming units per cm2. Bacillus licheniformis appeared to be the prevalent cultivable microorganism on a low-nutrient medium that was used for screening. 16S rRNA gene-based polymerase chain reaction–single strand conformation polymorphism profiling indicated that Group VI Bacillaceae species was well represented in the bacterial community of underwater speleothems. Interpretation of X-ray diffraction spectra and Raman spectroscopy data indicated that the B. licheniformis isolate produced in vitro abundant calcite microcrystals that were also characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. Production of calcite microcrystals was analyzed in different media (Christensen’s urea agar and B4 calcium carbonate precipitation medium) and incubation conditions, and it was found to be enhanced by nitrate supplement in B4 medium under low-oxygen conditions. B4 and B4-nitrate media also stimulated antibiotic production by the B. licheniformis isolate, which was analyzed by microbiological assays.  相似文献   

2.
Microbially induced carbonate precipitation (MICP) and associated biogas production may provide sustainable means of mitigating a number of geotechnical challenges associated with granular soils. MICP can induce interparticle soil cementation, mineral precipitation in soil pore space and/or biogas production to address geotechnical problems such as slope instability, soil erosion and scour, seepage of levees and cutoff walls, low bearing capacity of shallow foundations, and earthquake-induced liquefaction and settlement. Microbial denitrification has potential for improving the mechanical and hydraulic properties of soils because it promotes precipitation of calcium carbonate (CaCO3) and produces nitrogen (N2) gas without generating toxic by-products. We evaluated the potential for inducing carbonate precipitation in soil via bacterial denitrification using bench-scale experiments with the facultative anaerobe Pseudomonas denitrificans. Bench-scale experiments were conducted (1) without calcium in an N-rich bacterial growth medium in 2.0 L glass batch reactors and (2) with a source of calcium in sand-filled acrylic columns. Changes of pH, alkalinity, NO3? and NO2? in the batch reactors and columns, quantification of biogas production and observations of calcium-carbonate precipitation in the sand-filled columns indicate that denitrification led to carbonate precipitation and particle cementation in the pore water as well as a substantial amount of biogas production in both systems. These results document that bacterial denitrification has potential as a soil improvement mechanism.  相似文献   

3.
Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean‐atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4+) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus, future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4+ to nitrate (NO3?) ratio (NH4+/NO3?) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Herein, we show that NH4+ assimilation under N‐replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size, and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4+/NO3? ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology to develop accurate predictions of phytoplankton responses to ocean acidification.  相似文献   

4.
To obtain a restoring and protective calcite layer on degraded limestone, five different strains of the Bacillus sphaericus group and one strain of Bacillus lentus were tested for their ureolytic driven calcium carbonate precipitation. Although all the Bacillus strains were capable of depositing calcium carbonate, differences occurred in the amount of precipitated calcium carbonate on agar plate colonies. Seven parameters involved in the process were examined: calcite deposition on limestone cubes, pH increase, urea degrading capacity, extracellular polymeric substances (EPS)-production, biofilm formation, ζ-potential and deposition of dense crystal layers. The strain selection for optimal deposition of a dense CaCO3 layer on limestone, was based on decrease in water absorption rate by treated limestone. Not all of the bacterial strains were effective in the restoration of deteriorated Euville limestone. The best calcite precipitating strains were characterised by high ureolytic efficiency, homogeneous calcite deposition on limestone cubes and a very negative ζ-potential.  相似文献   

5.
Summary In Gibberella fujikuroi, ammonium (NH4 +) interfered with the production of gibberellic acid (GA3). Optimal production occurred at 19 mm (NH4)2SO4 and the synthesis of GA3 was reduced threefold in a medium with 38 mm (NH4)2SO4. Using a resting cell system with mycelia previously grown on two concentrations (19 mm and 38 mm) of (NH4)2SO4, it was found that NH4 + depressed synthesis of the gibberellin-synthesizing enzymes. Furthermore, addition of NH4 + to a producing system shut off gibberellin formation, indicating that the negative effect of NH4 + ions is also due to inhibition of one or more enzymes in the gibberellin biosynthesis pathway. The onset of gibberellin biosynthesis in media with high (38 mm) and low (19 mm) concentrations of (NH4)2SO4 was studied by addition of cycloheximide to batch cultures of various ages. Offprint requests to: B. Brückner  相似文献   

6.
Clogging of leachate collection systems within municipal solid waste landfills can result in greater potential for contaminants to breach the landfill barrier system. The primary cause of clogging is calcium carbonate (CaCO3(s)) precipitation from leachate and its accumulation within the pore space of the drainage medium. CaCO3(s) precipitation is caused by the anaerobic fermentation of volatile fatty acids (VFAs), which adds carbonate to and raises the pH of the leachate. An important relationship in modeling clogging in leachate collections systems is a yield coefficient that relates microbial fermentation of VFAs to precipitation of calcium carbonate. This paper develops a new, mechanistically based yield coefficient, called the carbonic acid yield coefficient (YH), which relates the carbonic acid (H2CO3) produced from microbial fermentation of acetate, propionate, and butyrate to calcium precipitation. The empirical values of YH were computed from the changes in acetate, propionate, butyrate, and calcium concentrations in leachate as it permeated through gravel-size material. The theoretical and empirical results show that the primary driver of CaCO3(s) precipitation is acetate fermentation. Additionally, other non-calcium cations (e.g., iron and magnesium) precipitated with carbonate (CO2-) when present in the leachate. A common yield between total cations bound to CO3 2- and H2CO3 produced, called the calcium carbonate yield coefficient (Yc), can reconcile the empirical yield coefficient for synthetic and actual leachates.  相似文献   

7.
Bacillus sphaericus has been widely used in mosquito control programs, but the large-scale production of this bacterium is expensive because of the high cost of the medium. In this study, we attempted to develop a cost-effective medium, based on inexpensive, locally available raw materials including soybean flour (Glycine max) and peanut cake powder (Arachis hypogea) by using 100-l bioreactor. Sporulation, toxicity and biomass were satisfactory after B. sphaericus was produced on both media. Use of the soybean culture medium resulted in “maximum” toxicity (LC50 14.02 ng/ml against third instar Culex quinquefasciatus larvae), highest spore count (3.7 × 10spores/ml) and maximum biomass (4.6 g/l) within a short fermentation time of 21 h. Hence, this soybean-based culture medium was considered most economical for the large-scale industrial production of B. sphaericus.  相似文献   

8.
In this study, Bacillus sphaericus NRC 69 was grown in culture media, in which 12 agricultural wastes were tested as the main carbon, nitrogen and energy sources under solid state fermentation. Of the 12 tested agricultural by-products, wheat bran was the most efficient substrate for the production of B. sphaericus mosquitocidal toxins against larvae of Culex pipiens (LC50 1.2 ppm). Mixtures of tested agricultural wastes separately with wheat bran enhanced the produced toxicity several folds and decreased LC50 between 3.7- and 50-fold in comparison with that of agricultural wastes without mixing. The toxicity of B. sphaericus grown in wheat bran/rice hull at 8/2 (g/g) and wheat bran/barley straw at 1/4 (g/g) showed the same toxicity as that in wheat bran medium (LC50 decreased 17- and 16-fold, in comparison with that in rice hull or barely straw media, respectively). In wheat bran medium, the maximum toxicity of the tested organism obtained at 50% moisture content, inoculum size 84 × 106 CFU/g wheat bran and incubation for 6 days at 30°C. Addition of cheese whey permeate at 10% to wheat bran medium enhanced the toxicity of B. sphaericus NRC 69 about 46%.  相似文献   

9.
Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation   总被引:1,自引:0,他引:1       下载免费PDF全文
During a study of ureolytic microbial calcium carbonate (CaCO3) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO3 crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected. Sequencing of 16S rRNA genes showed that all of the isolates were phylogenetically closely related to the Bacillus sphaericus group. Urease gene diversity among the isolates was examined by using a novel application of PCR-denaturing gradient gel electrophoresis (DGGE). This approach revealed significant differences between the isolates. Moreover, for several isolates, multiple bands appeared on the DGGE gels, suggesting the apparent presence of different urease genes in these isolates. The substrate affinities (Km) and maximum hydrolysis rates (Vmax) of crude enzyme extracts differed considerably for the different strains. For certain isolates, the urease activity increased up to 10-fold in the presence of 30 mM calcium, and apparently this contributed to the characteristic crystal formation by these isolates. We show that strain-specific calcification occurred during ureolytic microbial carbonate precipitation. The specificity was mainly due to differences in urease expression and the response to calcium.  相似文献   

10.
A novel strain of Bacillus sphaericus JS1 producing thermostable alkaline carboxymethyl cellulase (CMCase; endo-1,4--glucanase, E.C. 3.2.1.4) was isolated from soil using Horikoshi medium at pH 9.5. CMCase was purified 192-fold by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography, with an overall recovery of 23%. The CMCase is a multimeric protein with a molecular weight estimated by native-PAGE of 183 kDa. Using SDS-PAGE a single band is found at 42 kDa. This suggests presence of four homogeneous polypeptides, which would differentiate this enzyme from other known alkaline cellulases. The activity of the enzyme was significantly inhibited by bivalent cations (Fe3+ and Hg2+, 1.0 mM each) and activated by Co2+, K+ and Na+. The purified enzyme revealed the products of carboxymethyl cellulose (CMC) hydrolysis to be CM glucose, cellobiose and cellotriose. Thermostability, pH stability, good hydrolytic capability, and stability in the presence of detergents, surfactants, chelators and commercial proteases make this enzyme potentially useful in laundry detergents.  相似文献   

11.
Microbially-induced calcium carbonate (CaCO3) precipitation (MICP) is a widely explored and promising technology for use in various engineering applications. In this review, CaCO3 precipitation induced via urea hydrolysis (ureolysis) is examined for improving construction materials, cementing porous media, hydraulic control, and remediating environmental concerns. The control of MICP is explored through the manipulation of three factors: (1) the ureolytic activity (of microorganisms), (2) the reaction and transport rates of substrates, and (3) the saturation conditions of carbonate minerals. Many combinations of these factors have been researched to spatially and temporally control precipitation. This review discusses how optimization of MICP is attempted for different engineering applications in an effort to highlight the key research and development questions necessary to move MICP technologies toward commercial scale applications.  相似文献   

12.
The purpose of this research was to study how the bacteria Bacillus cereus (DCB1) utilizes calcium ions in a culture medium with carbon dioxide (CO2) to yield calcium carbonate (CaCO3). The bacteria strain DCB1 was a dominant strain isolated from dolomitic surfaces in areas of Karst topographies. The experimental method was as follows: a modified beef extract-peptone medium (beef extract 3.0 g, peptone 10 g, NaCl 5.0 g, CaCl2 2.0 g, glass powder 2.0 g, distilled water 1 L, and a pH between 6.5 and 7.5) was inoculated with B. cereus to attempt to induce the synthesis of CaCO3. The sample was then processed by centrifugation every 24 h during the 7-day cultivation period. The pH, carbonic anhydrase (CA) activity, and the concentrations of both HCO- 3 and Ca2+ in the supernatant fluid were measured. Subsequently, precipitation in the culture medium was analyzed to confirm, or otherwise, the presence and if present, the formation, of CaCO3. Methods used included X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive Spectroscopy (EDS). Meanwhile, the carbon source in the carbonate was classified by its isotope composition. Results showed that B. cereus can improve its pH value in this culture medium; concentrations of HCO- 3 and Ca2+ showed a significant decline over the duration of the cultivation period. CA activity reached its maximum during the second day; XRD, SEM, TEM, and isotope analysis all revealed the presence of CaCO3 as a precipitate. Additionally, these results did not occur in an aseptic control group: no detectable level of CaCO3 was produced therein. In conclusion: B. cereus can metabolize active materials, such as secretase, by its own growth and metabolism, and can either utilize atmospheric CO2, or respire, to induce CaCO3 production. Experimental evidence is offered for a concomitant CO2 reduction and CaCO3 induction by microorganisms.  相似文献   

13.
Interplays between intracellular pH (pHi) and calcium ([Ca2+]i) variations remain unclear, though both proton and calcium homeostasis changes accompany physiological events such as Xenopus laevis oocyte maturation. In this report, we used NH4Cl and changes of extracellular pH (pHe) to acidify the cytosol in a physiological range. In oocytes voltage-clamped at −80 mV, NH4Cl triggered an inward current, the main component of which is a Ca2+-dependent chloride current. Calcium imaging confirmed that NH4Cl provoked a [Ca2+]i increase. The mobilized sources of calcium were discriminated using the triple-step protocol as a means to follow both the calcium-activated chloride currents (ICl-Ca) and the hyperpolarization- and acid-activated nonselective cation current (IIn). These currents were stimulated during external addition of NH4Cl. This upregulation was abolished by BAPTA-AM, caffeine and heparin. By both buffering pHi changes with MOPS and by inhibiting calcium influx with lanthanum, intracellular acidification, initiated by NH4Cl and extracellular acidic medium, was shown to trigger a [Ca2+]i increase through both calcium release and calcium influx. The calcium pathways triggered by pHe changes are similar to those activated by NH4Cl, thus suggesting that there is a robust signaling mechanism allowing the cell to adjust to variable environmental conditions.  相似文献   

14.
Two newly developed media, H4 and H7, were found to be highly suitable for culturing Bacillus thuringiensis subsp. israelensis and B. sphaericus, respectively. These media contained 0.05% K2HPO4 and 4% HDL (H4 medium) or 0.05% K2HPO4 and 7% HDL (H7 medium); HDL is the by-product from a monosodium glutamate factory. Tests to compare endospore formation and toxicity values of B. thuringiensis subsp. israelensis in H4 medium and nutrient broth supplemented with salts and glucose (NBSG) medium were carried out in a 3-liter fermentor. The viable cell count and LC50 value of B. thuringiensis subsp. israelensis in H4 medium at 48 hr were 2.5 × 108 cells/ml and 10?7.2 (dilution), respectively, while those in NBSG medium were 1.6 × 108 cells/ml and 10?6.5, respectively. In the case of B. sphaericus grown in H7 medium, the number of cells and LC50 value were found to be 1.4 × 109 cells/ml and 10?7.8, respectively. B. sphaericus grown in nutrient broth supplemented with salt and yeast extract (NBSY) were found to produce 6.4 × 108 cells/ml and an LC50 value of 10?6.8. The toxicity of B. thuringiensis subsp. israelensis was tested against Aedes aegypti larvae, while that of B. sphaericus was tested against Culex quinquefasciatus. The cost of 10 liters of medium for production of B. thuringiensis subsp. israelensis and in B. sphaericus and H4 and H7 was $0.02 and $0.03, respectively. The cost of these newly developed media was much less than that of NBSG medium ($7.05 per 10 liters) for cultivation of B. thuringiensis subsp. israelensis and NBSY medium ($11.67 per 10 liters) for cultivation of B. sphaericus.  相似文献   

15.
Microbial precipitation of calcium carbonate is a widespread environmental phenomenon that has diverse engineering applications, from building and soil restoration to carbon sequestration. Urease-mediated ureolysis and CO2 (de)hydration by carbonic anhydrase (CA) are known for their potential to precipitate carbonate minerals, yet many environmental microbial community studies rely on marker gene or metagenomic approaches that are unable to determine in situ activity. Here, we developed fast and cost-effective tests for the field detection of urease and CA activity using pH-sensitive strips inside microcentrifuge tubes that change colour in response to the reaction products of urease (NH3) and CA (CO2). The urease assay proved sensitive and useful in the field to detect in situ activity in biofilms from a saline lake, a series of calcareous fens, and ferrous springs, finding relatively high urease activity in lake samples. Incubations of lake microbes with urea resulted in significantly higher CaCO3 precipitation compared to incubations with a urease inhibitor, showing that the rapid assay indicated an on-site active metabolism potentially mediating carbonate precipitation. The CA assay, however, showed less sensitivity compared to the urease test. While its sensitivity limits its utility, the assay may still be useful as a preliminary indicator given the paucity of other means for detecting CA activity in the field. Field urease, and potentially CA, activity assays complement molecular approaches and facilitate the search for carbonate-precipitating microbes and their in situ activity, which could be applied toward agriculture, engineering and carbon sequestration technologies.  相似文献   

16.
Abstract Tomato plants (Lycopersicon esculentum Mill. cv. San Marzano), grown in dilute nutrient solutions containing (in meq ˙ 1-1) 0.5 NaNO3, 0.5 NH4NO3 or 0.25 (NH4)2 SO4 as the nitrogen source, were detopped for collection of xylem sap and measurement of trans-root electrical potentials. The plant parts and the xylem exudate were subsequently analysed for mineral content. The commonly observed effects of NH4+ were noted, including reduction of calcium concentration in the xylem sap, and of calcium content in stems and leaves, compared with NO3-fed plants. This effect was attributed principally to the less negative trans-root electrical potential measured in NH4+-fed plants, and the resultant reduction of inward driving force on passively moving divalent cations.  相似文献   

17.
Fermenter-produced Bacillus sphaericus 2362 was formulated into a thick, dark flowable liquid concentrate containing 4.8×109 c.f.u./ml and charcoal as protector against ultraviolet light. The potencies of the formulation against L4 Culex pipiens quinquefasciatus before and after storage for 2 years were 5714 and 5862 International Toxic Units (ITU), respectively, when compared with a standardized B. sphaericus from the WHO at 1000 ITU. In field trials, treatment at 1.01/ha gave 96 to 100% control of mosquito larvae. B. sphaericus could be re-isolated in 5% of the samples 9 months after application.The authors are at the Department of Applied Microbiology & Brewing, Anambra State University of Technology, P.M.B. 5025, Awka, Nigeria.  相似文献   

18.
Somatic embryos were obtained from immature cotyledons of Lupinus angustifolius, L. albus and L. mutabilis but not from L. luteus. Different kinds of basal media and plant growth regulators in primary and secondary culture were tested. The best induction media were based on B5 and were supplemented with 5 mg I-1 2,4-D alone or with 0.25 mg I-1 kinetin. Mature stage somatic embryos were obtained on media containing ABA (0.1–0.5 mg I-1) and a high NH4/NO3 ratio. Embryo germination and plantlet development occurred on MS media supplemented with glutamine or GA3.  相似文献   

19.
Summary Soybean (Glycine max L. cv. Mandarin) and wheat (Triticum monococcum L.) cells were grown in media with NO3 - plus NH4 + (B5) and NO3 - without NH4 + (B5-NH4) as nitrogen sources. Changes in pH, [NO3 -] and [NH4 +] in media, and dry weight, protein content, nitrate reductase (NR) and glutamate dehydrogenase (GDH) in the cells were followed for about 170 h. With both NH4 + and NO3 - in the medium, NH4 + was utilized very quickly. Soybean cells grew poorly in the absence of NH4 + while wheat cells grew equally well on media with or without NH4 +. When soybean cells were grown in medium with NO3 - plus NH4 +, dry weight and NR activity remained relatively low for several hours after which both increased rapidly. This coincided with the time NH4 + was depleted from the medium. In the absence of NH4 +, soybean cell growth and NR activity remained low. NR activity in wheat cells, and GDH activity in soybean and wheat cells, did not vary significantly in the presence or absence of NH4 +.This work was supported by a grant in aid of research from the National Research Council of Canada to one of us (J. K.). NRCC No. 12521.  相似文献   

20.
A mathematical computer-aided model CELLOP was constructed in which the desirability functions in a three-dimensional experimental design can be used to find the optimal growing conditions for plant cells. CELLOP is intended for the optimisation of 3 to 6 physical, chemical, or biological variables in the cultivation conditions of plant cell cultures. The model was used to optimise the culturing conditions (calcium, inorganic nitrogen, and sucrose concentrations) for coumarin-producing, spontaneously embryogenic cell lines of angelica Angelica archangelica L. subsp. archangelica and hogs fennel Peucedanum palustre (L.) Moench. For A. archangelica the overall optimum concentrations were 0.47 mM Ca2+, 5.06 mM NO3 , 0.40 mM NH4 +, and 96.25 mM sucrose. The dry mass was 24.7 % higher and the coumarin content 40.5 % higher than those achieved in the standard 75 % Gamborg B5 medium. For A. archangelica the highest embryogenic activity was reached in the media containing 1.25 mM Ca2+. In the case of P. palustre the overall optimum concentrations were 1.60 mM Ca2+, 2.84 mM NO3 , 0.23 mM NH4 +, and 85.10 mM sucrose. For P. palustre the dry mass production increased by 61.8 % and the coumarin content by 58.1 % compared to the values achieved in the Gamborg B5 medium. For P. palustre the highest embryogenic activity was reached in the presence of 50.0 mM NO3 and 4.01 mM NH4 +.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号