首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle cell attachment in Caenorhabditis elegans   总被引:11,自引:2,他引:9       下载免费PDF全文
In the nematode Caenorhabditis elegans, the body wall muscles exert their force on the cuticle to generate locomotion. Interposed between the muscle cells and the cuticle are a basement membrane and a thin hypodermal cell. The latter contains bundles of filaments attached to dense plaques in the hypodermal cell membranes, which together we have called a fibrous organelle. In an effort to define the chain of molecules that anchor the muscle cells to the cuticle we have isolated five mAbs using preparations enriched in these components. Two antibodies define a 200-kD muscle antigen likely to be part of the basement membrane at the muscle/hypodermal interface. Three other antibodies probably identify elements of the fibrous organelles in the adjacent hypodermis. The mAb IFA, which reacts with mammalian intermediate filaments, also recognizes these structures. We suggest that the components recognized by these antibodies are likely to be involved in the transmission of tension from the muscle cell to the cuticle.  相似文献   

2.
Shatrov AB 《Tsitologiia》2000,42(3):219-227
The ultrastructural organization of hypodermis and the process of cuticle deposition is described for the pharate larvae of a trombiculid mite, Leptotrombidium orientale, being under the egg-shell and prelarval covering. The thin single-layered hypodermis consists of flattened epithelial cells containing oval or stretched nuclei and smooth basal plasma membrane. The apical membrane forms short scarce microvilli participating in the cuticle deposition. First of all, upper layers of the epicuticle, such as cuticulin lamella, wax and cement layers, are formed above the microvilli with plasma membrane plaques. Cuticulin layer is seen smooth at the early steps of this process. Very soon, however, epicuticle starts to be curved and forms particular high and tightly packed ridges, whereas the surface of hypodermal cells remains flat. Then a thick layer of the protein epicuticle is deposited due to secretory activity of hypodermal cells. Nearly simultaneously the thick lamellar procuticle starts to form through the deposition of their microfibrils at the tips of microvilli of the apical plasma membrane. Procuticle, as such, remains flat, is situated beneath the epicuticular ridges and contains curved pore canals. Cup-like pores in the epicuticle provide augmentation of the protein epicuticle mass due to secretion of particular substances by cells and to their transportation through the pore canals towards these epicuticular pores. The very beginning of the larval cuticle formation apparently indicates the starting point of the larval stage in ontogenesis, even though it remains for some time enveloped by the prelarval covering or sometimes by the egg-shell. When all the processes of formation are over, hungry larvae with a fully formed cuticle are actively hatched from two splitted halves of prelarval covering.  相似文献   

3.
A method was developed to remove the muscle from body wall strips of adult female Ascaris suum resulting in a hypodermis cuticle preparation. Optimum treatment for obtaining the hypodermis cuticle was a 15 min incubation with trypsin (2.0 mg/ml) at room temperature, followed by mechanical removal of the muscle. The hypodermis cuticle prepared in this manner incorporated radiolabeled amino acids into cuticular and hypodermal proteins; incorporation was inhibited by protein synthesis inhibitors. Characterization of the hypodermal proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the hypodermis apparently contains proteins that differ from those of the cuticle and that the hypodermis of adult A. suum appears to lack cuticle protein precursors. This result will now allow detailed biochemical and physiological investigations of the hypodermis, a tissue which is critical for cuticle synthesis.  相似文献   

4.
C. Elegans has four muscle quadrants that are used for locomotion. Contraction is converted to locomotion because muscle cells are anchored to the cuticle (the outer covering of the worm) by a specialized basement membrane and hemidesmosome structures in the hypodermis (a cellular syncytium that covers the worm and secretes the cuticle). To study muscle assembly, we have used antibodies to determine the spatial and temporal distribution of muscle and attachment structure components in wild-type and mutant C. elegans embryos. Myofibrillar components are first observed diffusely distributed in the muscle cells, and are expressed in some dividing cells. Later, the components accumulate at the membrane adjacent to the hypodermis where the sarcomeres will form, showing that the cells have become polarized. Assembly of muscle attachment structures is spatially and temporally coordinated with muscle assembly suggesting that important developmental signals may be passed between muscle and hypodermal cells. Analysis of embryos homozygous for mutations that affect muscle assembly show that muscle components closer to the membrane than the affected protein assemble quite well, while those further from the membrane do not. Our results suggest a model where lattice assembly is initiated at the membrane and the spatial organization of the structural elements of the muscle is dictated by membrane proximal events, not by the filament components themselves.  相似文献   

5.
Electron microscope observations were made of the Australian and U.S. strains of Culicinomyces clavisporus infecting mosquito larvae. The wall of the conidium is composed of an inner (primary) layer, an outer (secondary) layer, and an exterior coating of a mucopolysaccharide substance believed responsible for conidial adhesion to the host cuticle prior to germination and penetration. In some instances the wall of the conidium is ruptured during germination and new wall layers and mucoid coating form around the germ tube whereas in other specimens the conidial wall layers extend around the germ tube without fracturing. The most common invasion site is through the larval foregut following ingestion of conidia. The apex of the germ tube presses tightly against the surface of the foregut cuticle and the mucilaginous coating is stripped away. There is evidence to suggest that the host epicuticle, which disappears across the zone of contact with the germ tube, is utilized for nutrition of the invading fungus. A collar of cuticle forms around the germ tube apex and a narrow penetrant hyphae extends into the procuticle. It is believed that cuticular penetration is primarily enzymatic assisted by mechanical pressure. The penetrant hypha swells into an oval cell in the hypodermal region and vegetative hypha then invade the hemocoel. The cells of the hypodermis develop signs of degeneration presumably due to the secretion of toxic substances from the invading hyphae. Host reactions, involving melanization of the host tissues, are sometimes evident among the invading penetrant hyphae in the cuticle or in the hypodermal cells in contact with the fungus. Melanized capsules form around some of the hyphae within the hemocoel. These latter reactions do not directly involve host blood cells and are examples of “humoral encapsulation” similar to that described by other authors during invasion of pathogenic organisms into mosquito larvae and chironomid larvae.  相似文献   

6.
During development Caenorhabditis elegans changes from an embryo that is relatively spherical in shape to a long thin worm. This paper provides evidence that the elongation of the body is caused by the outermost layer of embryonic cells, the hypodermis, squeezing the embryo circumferentially. The hypodermal cells surround the embryo and are linked together by cellular junctions. Numerous circumferentially oriented bundles of microfilaments are present at the outer surfaces of the hypodermal cells as the embryo elongates. Elongation is associated with an apparent pressure on the internal cells of the embryo, and cytochalasin D reversibly inhibits both elongation and the increase in pressure. Circumferentially oriented microtubules also are associated with the outer membranes of the hypodermal cells during elongation. Experiments with the microtubule inhibitors colcemid, griseofulvin, and nocodazole suggest that the microtubules function to distribute across the membrane stresses resulting from microfilament contraction, such that the embryo decreases in circumference uniformly during elongation. While the cytoskeletal organization of the hypodermal cells appears to determine the shape of the embryo during elongation, an extracellular cuticle appears to maintain the body shape after elongation.  相似文献   

7.
The mechanosensory innervation of the lobster (Homarus americanus) swimmeret was examined by electrophysiologically recording afferent spike responses initiated by localized mechanical stimulation of the caudal surface of the swimmeret. Two functional groups of subcuticular hypodermal mechanoreceptors innervate the swimmeret. Afferents of one group innervate the small discrete "ridges" of calcified cuticle lining the margins of both swimmeret rami. Putative ridge receptors are bipolar sensory neurons responding phasically to deformation of the ridge cuticle with the number and frequency of impulses produced dependent on stimulus strength and velocity. Afferents of the second group, which innervate substantial areas of hypodermis underlying the soft, flexible cuticular regions of the swimmeret, were designated "wide-field" hypodermal mechanoreceptors. These neurons have multiterminal receptive fields and respond phaso-tonically to cuticular distortion. The response properties of both types of hypodermal mechanoreceptors imply that they are activated during the characteristic beating movements of the swimmerets.  相似文献   

8.
An important adaptation to land habitats in terrestrial isopod crustaceans is development of embryos in a fluid-filled female brood pouch, marsupium. The study brings insight into the structure and protective role of egg envelopes and cuticle renewal during ontogenetic development of Porcellio embryos and marsupial mancas. Egg envelopes cover embryos, the outer chorion until late-stage embryo and the inner vitelline membrane throughout the whole embryonic development. Egg envelopes of Porcellio have relatively simple ultrastuctural architecture compared to Drosophila egg envelopes. Exoskeletal cuticle is produced in late embryonic development by hypodermal cells of the embryo and is renewed in further development in relation to growth of developing embryos and mancas. Cuticle structure and renewal in prehatching late-stage embryos and marsupial mancas exhibit main features of cuticle in adults. Epicuticle is thin and homogenous. The characteristic arrangement of chitin-protein fibers and the dense distal layer in exocuticle are hardly discernible in prehatching embryo and distinct in marsupial mancas. Endocuticle consists of alternating electron dense and electron lucent sublayers and is perforated by pore canals in both stages. Differences from adult cuticle are evident in cuticle thickness, ultrastructure and mineralization. Signs of cuticle renewal in prehatching embryo and marsupial mancas such as detachment of cuticle from hypodermis, partial disintegration of endocuticle and assembly of new cuticle are described.  相似文献   

9.
Crustaceans are covered by a cuticle that does not grow. In order for an individual to grow, the cuticle must periodically be shed (ecdysis). Replacement of the old cuticle with a new one depends on processes that require precise timing and control, yet the nature and location of these controls remain unclear. A candidate site for them is within the hypodermal microvilli. These cellular structures extend through pore canals deep into the acellular cuticular matrix. Changes in the lipid composition of hypodermal microvilli could modulate water and ion fluxes and enzyme activities during critical stages of the molt cycle; however, the lipid composition of these structures has not been assessed during the molt cycle. Data presented here show that phospholipids isolated from hypodermal microvilli of Callinectes sapidus initially have elevated levels of n-6 fatty acids that decline steadily beginning just after ecdysis. Experiments with liposomes reveal that n-6 fatty acids decrease the calcium permeability of membranes, suggesting that the initially elevated levels in the cuticle may function to reduce calcium flux from the cuticle into the hypodermis. In addition, the ratio of cholesterol to phospholipid and the proportion of oleic acid in membrane phospholipids are maximal at 6 h post-ecdysis. It is known that changes in cholesterol and oleic acid content alter membrane permeability to water. It is, therefore possible that water flux through hypodermal membranes is also modulated in the early post-molt cuticle. Changes in microvillar lipid composition might serve importantly to control biomineralization in the post-ecdysal cuticle.  相似文献   

10.
PERUMALLA, C. J., CHMIELEWSKI, J. G. & PETERSON, C A., 1990. A survey of angiosperm species to detect hypodermal Casparian bands. III. Rhizomes. Rhizomes of ten species of the class Magnoliopsida (Dicotyledoneae) and five species of the class Liliopsida (Monocotyledoneae) were studied to determine whether Casparian bands exist in their hypodermes. The hypodermal walls of rhizomes of all species surveyed appeared autofluorescent under violet light. In sections cleared with NaOH and stained with Chelidonium majus root extract, the radial walls and sometimes the tangential walls of the hypodermis showed bright fluorescence. When the rhizomes were treated with the apoplastic dye, Cellufluor, the dye was initially blocked by the cuticle. When the continuity of the cuticle was disrupted with a needle before treating with Cellufluor, the dye penetrated all the walls of the epidermis and the outer tangential walls of the hypodermis but was blocked by the radial walls of the hypodermis. The walls of the hypodermis stained positively for suberin or suberin and lignin and were resistant to treatment with concentrated sulphuric acid. On the basis of the above tests, it is concluded that Casparian bands are present in the hypodermis of rhizomes of all species surveyed.  相似文献   

11.
The morphology and alterations of infective juvenile (J2) body components with emphasis on the body wall, stomatal wall, stylet, and sensilla of Heterodera glycines were observed. During the molt of J2 to J3, the J2 hypodermis separates from the J2 cuticle and forms an extracellular space, continuous with an invagination of the anterior, center of the J3. The space between the J2 cuticle and the enlarged J3 hypodermal cells is filled with electron-dense material resembling a fluid observed in insects during molt. Regeneration of the J2 during molt was traced in a series of ultrathin sections. The site of stylet regeneration is in the hypodermal and myoepithelial tissues of the invaginated anterior, center of the J3. Four arcade-like cells are related to specific components of the stomatal wall, the stylet cone, and the stylet shaft of the J3. The first and second arcade-like cells are primarily related to stomatal wall development, whereas the third and fourth arcade-like cells are related to stylet cone and shaft development. Spherical, electron-translucent vacuoles that occur in myoepithelial cells just posterior to the arcade-like cells appear to be progenitors of the stylet knobs. Early stages of protractor muscle attachment to the vacuolar membrane were observed.  相似文献   

12.
Lee DL 《Tissue & cell》1970,2(1):139-153
The process of moulting and the formation of the new cuticle during the final moult of the nematode Nippostrongylus brasiliensis have been described. After separation of the hypodermis from the old cuticle, the new cuticle is secreted by the hypodermis. The first layers to be formed are the outer trilaminate membrane and the fibre layers. The struts of the cuticle separate out from the fibrillar and granular components of the outer cuticle. There is no reabsorption of the old cuticle.  相似文献   

13.
Antibodies against the cuticle surface of Trichinella spiralis muscle larvae were purified by means of immunoaffinity chromatography and incubated with ultrathin sections of muscle larvae. Major constituents of the parasite reactive with the purified antibodies included the cuticle surface, stichocyte alpha-granules, and the esophagus occupying substance of the muscle larvae. Thus the present data suggest that the cuticle surface is an antigenically different entity from the cuticle inner layers and its origin is likely stichocyte alpha-granules.  相似文献   

14.
The structure of purified fractions of rough, smooth, stripped rough and reconstituted rough membranes have been investigated by the freeze etching technique. Preparations of rough and reconstituted rough membranes, active in protein synthesis, show vesicles whose outer surface is covered with ribosome-like particles. The inner surface of these vesicles contains also numerous particles of the same size. The particles located on the outer surface are largely absent in the stripped rough membrane preparations which, however, retain the particles located on the inner face. Particles were not seen either on the outer nor on the inner face of the smooth membranes. The possibility is considered that the particles located on the inner face are specific to the rough membranes and might play a role in the specific binding of ribosomes to the membranes.  相似文献   

15.
The effect of the local anesthetic dibucaine on the membrane ultrastructure of sterol-manipulated Tetrahymena pyriformis (NT-1 strain) was studied by freeze-fracture electron microscopy. Dibucaine-treated, ergosterol-replaced Tetrahymena cells had marked alterations in their plasma membranes. IMP-free small depressions (exoplasmic fracture face) and protrusions (protoplasmic fracture face) were formed on the plasma membranes which was in contact with the outer alveolar membrane. In addition, large IMP-free surface "blebs" covered with hexagonally-arranged depressions and protrusions appeared on both the plasma and outer alveolar membranes. These "blebs" were pinched off when the membranes were severely affected. Our previous study (28) demonstrated that the plasma membrane of dibucaine-treated native Tetrahymena cells that contain tetrahymanol showed vertical displacement of its intramembranous particles and that subsequently a smooth, flat surface appeared. Therefore, the structural changes in ergosterol-replaced membranes produced by dibucaine differ strikingly from changes in the native membranes. The remarkable difference in the ultrastructural deformation of the plasma membrane probably is due to a difference in the membrane lipid composition induced by sterol-manipulation.  相似文献   

16.
In Drosophila melanogaster embryos cuticle formation occurs between 12 and 16 hours of development at 25°C. The formation of the cuticulin and the protein epicuticular layers is simultaneous in the hypoderm, the tracheoblasts, and the fore- and hindgut cells. The cuticulin forms as a dual lamina, aggregating from granules secreted by the hypodermal cells. This is followed by the formation of a granular protein epicuticle and finally by the secretion of a mixed fibrous and granular endocuticle. All secretory cells are relatively simple in their ultrastructure. The secretory process is a membrane phenomenon, occurring at the tips of hypodermal microvillae on cells at the surface of the embryo and on those hypodermal cells lining the lumen of the fore- and hindgut. It also occurs along the entire surface of the tracheoblast lumen as well as on the outer surface of those cells which form exoskeletal chitinous setae. The process involves a specialization of the plasma membrane with the formation of secretory granules intracellularly beneath the membrane and the extrusion of these granules through the membrane to the outside where final cuticle formation occurs.  相似文献   

17.
Differentiating imaginal hypodermal cells of Drosophila melanogaster form adult cuticle during the second half of the pupal stage (about 40 to 93 hr postpupariation). A group of proteins with molecular weights of 23,000, 20,000, and 14,000 is identified as putative major wing cuticle proteins with the following biological properties: These proteins are abundant components of cuticle and are major synthetic products of cuticle-secreting hypodermal cells. They are leucine-rich and methionine-free and are the most prominent proteins of this type synthesized by wing hypoderm at 65 hr, during the period of procuticle formation. Electron microscopic autoradiography shows that leucine-rich, methionine-free proteins specifically localize to the apical cell surface and newly secreted cuticle of 65-hr wing cells. This strongly suggests the export of these proteins to the cuticle. Lastly, these proteins undergo a reduction in extractability just after eclosion, during the period of cuticle protein crosslinking (sclerotization). The synthesis of these major hypoderm proteins is temporally regulated in development. In wing cells, the 14-kDa proteins are synthesized first, from 53 to 78 hr, and the 20- and 23-kDa proteins are synthesized from 63 to 93 hr. The pattern of synthesis for these proteins is similar in abdominal cells but delayed by 6 to 10 hr. Two-dimensional gel electrophoresis shows that each of the 23-, 20-, and 14-kDa size classes contains at least two component polypeptides. Patterns of protein synthesis in cells of the imaginal hypodermis are regulated in a precise temporal sequence during the production of adult cuticle. Their study yields a useful system for the analysis of molecular events in gene control and cell differentiation.  相似文献   

18.
Summary Scanning electron microscopy demonstrated that the cecum of the guinea-pig is colonized by numerous spiral-shaped bacteria; these microorganisms, which adhere to mucosa at one end, were found exclusively on the brush border of the surface epithelium. The membranes of sectioned bacteria have a set of electron-dense bands girdling the tip adhered to epithelium. Freeze-fracture replicas of the bacteria revealed the prokaryote-eukaryote junction as a set of ridges on the P-face of outer membrane; the numerous particles of E-face were arranged in parallel rows; on the other hand, the apical plasma membrane and subjacent cytoplasm of epithelium occupied by the spiral-shaped bacteria did not show a structural counterpart. Observations suggest that one end of the spiral-shaped bacteria possesses specialized membrane components that permit specific attachment to the apical surface of epithelial cells.  相似文献   

19.
Tissue functions and mechanical coupling of cells must be integrated throughout development. A striking example of this coupling is the interactions of body wall muscle and hypodermal cells in Caenorhabditis elegans. These tissues are intimately associated in development and their interactions generate structures that provide a continuous mechanical link to transmit muscle forces across the hypodermis to the cuticle. Previously, we established that mup-4 is essential in embryonic epithelial (hypodermal) morphogenesis and maintenance of muscle position. Here, we report that mup-4 encodes a novel transmembrane protein that is required for attachments between the apical epithelial surface and the cuticular matrix. Its extracellular domain includes epidermal growth factor-like repeats, a von Willebrand factor A domain, and two sea urchin enterokinase modules. Its intracellular domain is homologous to filaggrin, an intermediate filament (IF)-associated protein that regulates IF compaction and that has not previously been reported as part of a junctional complex. MUP-4 colocalizes with epithelial hemidesmosomes overlying body wall muscles, beginning at the time of embryonic cuticle maturation, as well as with other sites of mechanical coupling. These findings support that MUP-4 is a junctional protein that functions in IF tethering, cell-matrix adherence, and mechanical coupling of tissues.  相似文献   

20.
Repeated molting of the cuticula is an integral part of arthropod and nematode development. Shedding of the old cuticle takes place on the surface of hypodermal cells, which are also responsible for secretion and synthesis of a new cuticle. Here, we use the model nematode Caenorhabditis elegans to show that muscle cells, laying beneath and mechanically linked to the hypodermis, play an important role during molting. We followed the molecular composition and distribution of integrin mediated adhesion structures called dense bodies (DB), which indirectly connect muscles to the hypodermis. We found the concentration of two DB proteins (PAT-3/β-integrin and UNC-95) to decrease during the quiescent phase of molting, concomitant with an apparent increase in lateral movement of the DB. We show that levels of the E3-ligase RNF-5 increase specifically during molting, and that RNF-5 acts to ubiquitinate the DB protein UNC-95. Persistent high levels of RNF-5 driven by a heatshock or unc-95 promoter lead to failure of ecdysis, and in non-molting worms to a progressive detachment of the cuticle from the hypodermis. These observations indicate that increased DB dynamics characterizes the lethargus phase of molting in parallel to decreased levels of DB components and that temporal expression of RNF-5 contributes to an efficient molting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号