首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effect of a local anesthetic, dibucaine, on the plasma membrane of Tetrahymena pyriformis strain NT-1 using freeze-fracture electron microscopy. Intramembranous particles (IMPs) were distributed homogeneously on the plasma membrane of untreated cells. But, when Tetrahymena cells had been treated with 1.3 mM dibucaine for 5 min at growth temperature, freeze-fracture micrographs of the plasma membrane showed marked alterations. Although IMPs showed an almost homogeneous distribution, their density was elevated markedly on the protoplasmic fracture (PF) face but greatly reduce on the exoplasmic fracture (EF) face. Areas around deciliated portions had a reverse IMP density distribution for the PF and EF faces. These results suggest that dibucaine induced vertical displacement of the IMPs in the plasma membrane.  相似文献   

2.
Polymyxin-caused projections on the cell surface of Salmonella typhimurium were seen as depressions in the outer concave fracture face and as protrusions in the outer convex fracture face, indicating participation of both leaflets of the outer membrane in these projections.  相似文献   

3.
We describe, in sections and by freeze-fracture, four classes of intramembrane particle (IMP)-free membrane blebs or "blisters" associated with glutaraldehyde-fixed embryonic corneal fibroblasts: (a) Single blisters attached to the cell membrane; (b) free (detached) vesicles; (c) myelin figures; (d) multivesicular protrusions which resemble the "mounds" described by others on nerve growth cones. The IMP-free, membrane-bounded blisters contain no ground cytoplasm or organelles, in contrast to blebs on trypsin-isolated fibroblasts, which we show here do contain cytoplasm and IMP-rich membranes. That the IMP-free membrane blisters in embryonic corneas are artefacts of fixation is demonstrated by (a) their absence in replicas of fibroblasts frozen and fractured without prior aldehyde fixation and (b) their absence in sections of fibroblasts fixed in a combination of glutaraldehyde and osmium tetroxide. We suggest that the addition of osmium prevents postfixation movement of membrane lipids, especially the negatively charged "fluid" lipids which others have shown are capable of considerable mobility after aldehyde fixation alone. Recent literature has implicated membrane blistering in secretory processes and in growth of nerves, but before the functional significance of such IMP-free blisters is assessed, membrane mobility of the type shown here should be taken into consideration.  相似文献   

4.
Seedlings of Triticum aestivum L. cv. Lennox were grown in different environments to obtain different hardiness. Pieces of laminae and leaf bases were slowly cooled to sub-zero temperatures and the damage caused was assessed by an ion-leakage method. Comparable pieces of tissue were slowly cooled to temperatures between 2° and-14°C and were then freeze-fixed and freeze-etched. Membranes generally retained their lamellar structures indicated by the abundance of typical membrane fracture faces in all treatments, and some membrane fracture faces had patches which lacked the usual scattering of intramembranous particles (IMP). These IMP-free areas were present in the plasma membrane of tissues given a damaging freezing treatment, but were absent from the plasma membrane of room-temperature controls, of supercooled tissues, and of tissues given a non-damaging freezing treatment. The frequency of IMP-free areas and the proportion of the plasma membrane affected increased with increasing damage. In the most damaged tissue (79% damage; leaf bases exposed to-8°C), 20% of the plasma membrane was IMP-free. The frequencies of IMP at a distance from the IMP-free areas were unaffected by freezing treatments. There was a patchy distribution of IMP in other membranes (nuclear envelope, tonoplast, thylakoids, chloroplast envelope), but only in the nuclear envelope did it appear possible that their occurrence coincided with damage. The IMP-free areas of several membranes were sometimes associated together in stacks. Such membranes lay both to the outside and inside of the plasma membrane, indicating that at least some of the adjacent membrane fragments arose as a result of membrane reorganization induced by the damaging treatment. Occasional views of folded IMP-free plasma membrane tended to confirm this conclusion. The following hypothesis is advanced to explain the damage induced by extracellular freezing. Areas of plasma membrane become free of IMP, probably as a result of the freezing-induced cellular dehydration. The lipids in these IMP-free patches may be in the fluid rather than the gel phase. The formation of these IMP-free patches, especially in the plasma membrane, initiates or involves proliferation and possibly fusion of membranes, and during or following this process, the cells become leaky.Abbreviations EF exoplasmatic fracture face - IMP intramembranous particles - PF protoplasmatic fracture face  相似文献   

5.
Freeze-etching was applied to preparations, with and without glycerol, of Acinetobacter sp. strain MJT/F5/199A, consisting of intact cells after normal growth or after incubation with chloramphenicol, spheroplasts, and isolated cell walls and outer membranes. Etched preparations show that a regular array of subunits forms the surface of normal cells. Near the zones of constriction in dividing cells, blebs and irregularities are seen, and some blebs, consisting of both surface subunits and outer membrane, are released from the cells. The cross-fractured cell envelope shows four layers which are related to the structures seen in section as follows: cw1, which is not visible in section, contains the surface subunits; cw2 consists of all or part of the outer membrane; cw3 includes the intermediate and dense, peptidoglycan-containing layers; within these cell wall layers is the plasma membrane. Internal fracture of the plasma membrane occurs under all conditions tested, but the fracture plane in the cell wall is only revealed in chloramphenicol-treated cells or normal cells freeze-fractured with glycerol present; the characteristic fracture faces are not seen in spheroplasts or isolated outer membranes. The concave fracture face cw2 consists of densely packed granules, while the convex face cw3 is fibrillar. The probable location of this fracture plane is discussed. After incubation with chloramphenicol, the outer surface of the cells is obscured by extracellular material, the dense peptidoglycan-containing layer is increased in thickness, and the cytoplasm contains rounded bodies bounded by one or more unit membranes.  相似文献   

6.
Tertiary amine local anesthetics (dibucaine, tetracaine, procaine) reversibly affect the morphology of untransformed BALB/3T3 cells and the organization of membrane-associated cytoskeletal elements. In the presence of these drugs cells contract and become rounded in shape with the appearance of numerous surface "blebs." Electron microscope examination of anesthetic-treated cells revealed significant reductions in plasma membrane-associated microtubules and microfilaments and/or their plasma membrane attachment. The relationship of the findings on local anesthetic-induced changes in cellular cytoskeletal systems is discussed in relation to previous proposals on plasma membrane organization and control of cell surface receptor topography and mobility.  相似文献   

7.
Cell envelope associations of Aquaspirillum serpens flagella.   总被引:12,自引:9,他引:3       下载免费PDF全文
Specific regions of the cell envelope associated with the flagellar basal complex of the gram-negative bacterium Aquaspirillum (Spirillum) serpens were identified by studying each of the envelope layers: outer membrane, mucopeptide, and plasma membrane. The outer membrane around the flagella insertion site was differentiated by concentric membrane rings and central perforations surrounded by a closely set collar. The perforations in both the outer membrane and the isolated mucopeptide layer were of a size accomodating the central rod of the basal complex but smaller than either the L or the P disks. The P disk of the complex may lie between the mucopeptide and the outer membrane. Electron microscopy of intact, spheroplasted, or autolyzed preparations did not adequately resolve the location of the inner pair of disks of the basal complex. Freeze-etching, however, revealed differentiation within the plasma membrane that appeared to be related to the basal complex. The convex fracture face showed depressions which are interpreted as impressions of a disk surrounded by a set of evenly spaced macromolecular studs and containing a central "plug" interpreted as the central rod. In thin sections, blebs, which appear to be associated with the flagellar apparatus, were seen on the cytoplasmic side of the plasma membrane. Superimposing the dimensions of the flagellar basal complex and the spacings of the cell envelope layers and using the position of the L disk within the outer membrane for reference, showed that the S disk might be within and the M disk beneath the plasma membrane. A tentative model was developed for comparison with that based on the structure of the Escherichia coli basal complex.  相似文献   

8.
Structural changes in Tetrahymena pyriformis, strain WH-14, induced by growth on saturated phospholipids at 40.1 °C, were studied by electron microscopy. Alterations in the ultrastructural organization of the cell membrane and surface regions were common. These alterations were characterized in the displacement of kinetosomes, the spatial disorientation and disorganization of cortical ridges and grooves, and the spatial disorientation of longitudinal and transverse microtubular ribbons. Irregular surface protrusions and multiple invaginations of alveolar membranes were among the most common features encountered. Disorganization of longitudinal microtubular ribbons was also a frequent encounter. The integrity of the ultrastructure of cell surface membranes and of the internal organization and ultrastructure of the kinetosomes, however, appeared to be unaltered. Other alterations included those of a number of cytoplasmic organelles (e.g. mitochondria and endoplasmic reticulum), which showed characteristic changes in structural patterns.  相似文献   

9.
The changes in membrane structure of rabbit polymorphonuclear (PMN) leukocytes during bacterial phagocytosis was investigated with scanning electron microscope (SEM), thin-section, and freeze-fracture techniques. SEM observations of bacterial attachment sites showed the involvement of limited areas of PMN membrane surface (0.01-0.25μm(2)). Frequently, these areas of attachment were located on membrane extensions. The membrane extensions were present before, during, and after the engulfment of bacteria, but were diminished in size after bacterial engulfment. In general, the results obtained with SEM and thin-section techniques aided in the interpretation of the three-dimensional freeze-fracture replicas. Freeze-fracture results revealed the PMN leukocytes had two fracture faces as determined by the relative density of intramembranous particles (IMP). Membranous extensions of the plasma membrane, lysosomes, and phagocytic vacuoles contained IMP's with a distribution and density similar to those of the plasma membrane. During phagocytosis, IMPs within the plasma membrane did not undergo a massive aggregation. In fact, structural changes within the membranes were infrequent and localized to regions such as the attachment sites of bacteria, the fusion sites on the plasma membrane, and small scale changes in the phagocytic vacuole membrane during membrane fusion. During the formation of the phagocytic vacuole, the IMPs of the plasma membrane appeared to move in with the lipid bilayer while maintaining a distribution and density of IMPs similar to those of the plasma membranes. Occasionally, IMPs were aligned to linear arrays within phagocytic vacuole membranes. This alignment might be due to an interaction with linearly arranged motile structures on the side of the phagocytic vacuole membranes. IMP-free regions were observed after fusion of lysosomes with the phagocytic vacuoles or plasma membrane. These IMP-free areas probably represent sites where membrane fusion occurred between lysosomal membrane and phagocytic vacuole membrane or plasma membrane. Highly symmetrical patterns of IMPs were not observed during lysosomal membrane fusion.  相似文献   

10.
Freeze-fracture study of Blastocystis hominis   总被引:1,自引:0,他引:1  
The ultrastructure of Blastocystis hominis was investigated by the freeze-fracture method. Freeze-fracture replicas of the membranes of B. hominis and its organelles were studied with special regard to the density and distribution of the intramembranous particles (IMP's). On all membrane replicas, the concentration of IMP's on the protoplasmic face (P face) invariably was greater than on the exoplasmic face (E face). On the P face, IMP's were heterogeneously distributed in dense aggregates, alternating with particle-free, smooth surface areas. Occasionally, small depressions and protrusions were observed in these areas. On the membrane of the central vacuole, invaginations into the vacuole were frequently observed within the smooth surface regions. Since most of the granules in the central vacuoles had no IMP's, it seems likely that the intervacuolar granules were formed from these invaginations of the vacuole membrane. The width of the intermembrane space between the inner and outer membranes of the nuclear envelope was uneven, with regions of relative narrowness interspersed with regions of expansion. Nuclear pores were localized within the narrow portions of this space. A nucleus, apparently in the process of dividing, was observed enclosed within an intact outer membrane. Division of the outer membrane would then result in the formation of two discrete nuclei.  相似文献   

11.
Three types of membrane interactions were studied in three exocrine systems (the acinar cells of the rat parotid, rat lacrimal gland, and guinea pig pancrease) by freeze- fracture and thin-section electron microscopy: exocytosis, induced in vivo by specific pharmacological stimulations; the mutual apposition of secretory granule membranes in the intact cell; membrane appositions induced in vitro by centrifugation of the isolated granules. In all three glandular cells, the distribution of intramembrane particles (IMP) on the fracture faces of the luminal plasmagranule membrane particles (IMP) on the fracture faces of the lumenal plasmalemma appeared random before stimulation. However, after injection of secretagogues, IMP were rapidly clearly from the areas of granule- plasmalemma apposition in the parotid cells and, especially, in lacrimocytes. In the latter, the cleared areas appeared as large bulges toward the lumen, whereas in the parotid they were less pronounced. Exocytotic openings were usually large and the fracture faces of their rims were covered with IMP. In contrast, in stimulated pancreatic acinar cells, the IMP distribution remained apparently random after stimulation. Exocytoses were established through the formation of narrown necks, and no images which might correspond to early stages of membrane fusion were revealed. Within the cytoplasm of parotid and lacrimal cells (but not in the pancreas), both at rest and after stimulation, secretion granules were often closely apposed by means of flat, circular areas, also devoid of IMP. In thin sections, the images corresponding to IMP-free areas were close granule-granule and granule-plasmalemma appositions, sometimes with focal merging of the membrane outer layers to yield pentalaminar structures. Isolated secretion granules were forced together in vitro by centrifugation. Under these conditions, increasing the centrifugal force from 1,600 to 50,000 g for 10 min resulted in a progressive, statistically significant increase of the frequency of IMP-free flat appositions between parotid granules. In contrast, no such areas were seen between freeze-fractured pancreatic granules, although some focal pentalaminar appositions appeared in section after centrifugation at 50 and 100,000 g for 10 min. On the basis of the observation that, in secretory cells, IMP clearing always develops in deformed membrane areas (bulges, depressions, flat areas), it is suggested that it might result from the forced mechanical apposition of the interacting membranes. This might be a preliminary process not sufficient to initiate fusion. In the pancreas, IMP clearing could occur over surface areas too small to be detected. In stimulated parotid and lacrimal glands they were exceptional. These structures were either attached at the sites of continuity between granule and plasma membranes, or free in the acinar lumen, with a preferential location within exocytotic pockets or in their proximity. Experiments designed to investigate the nature of these blisters and vesicles revealed that they probably arise artifactually during glutaraldehyde fixation. In fact, (a) they were large and numerous in poorly fixed samples but were never observed in thin sections of specimens fixed in one step with glutaraldehyde and OsO(4); and (b) no increase in concentration of phospholipids was observed in the parotid saliva and pancreatic juice after stimulation of protein discharge, as was to be expected if release of membrane material were occurring after exocytosis.  相似文献   

12.
R. S. Pearce 《Planta》1985,166(1):1-14
Seedlings of Triticum aestivum L. cv. Neepawa were slowly drought-stressed by witholding water after sowing in pots. Leaf extension stopped during development of the third leaf. Damage was assessed by rewatering the pots and measuring regrowth; 1–5 d after growth stopped, rewatering induced significant regrowth within several hours; 6–13 d after growth stopped, regrowth was delayed; from 14 d after growth stopped, no regrowth occurred after rewatering. Leaf bases were excised from the drought-stressed seedlings during this period of increasing damage, and were freeze-etched.Intramembranous particles (IMP) were evenly scattered in the plasma membrane in those plants which regrew immediately after rewatering. In the plants which regrew after a delay or which did not regrow on rewatering, there were patches without IMP in plasma membrane, nuclear envelope, and other membranes. Plasma membrane, nuclear envelope and possibly other membranes were sometimes partly replaced by vesicles, possibly formed from the original membrane. Such vesiculation occurred in a few cells in plants which survived the stress with a delayed regrowth, and was commoner in the plants which did not recover. The results support the idea that slow drought induces IMP-free patches in membranes including the plasma membrane, this induces membrane reorganisation including vesiculation of membranes and coagulation of protoplasm, and that these are expressed as delayed or failed regrowth. Some IMP-free patches in the plasma membrane had a faint ordered sub-structure, possibly a hexagonal lipid phase. Such patches were infrequent and IMP sometimes occurred in areas of plasma membrane having an apparently similar sub-structure. Thus the IMP-free patches could not be explained by a lamellar-hexagonal phase transition. As the stress became damaging, vesicles and endoplasmic reticulum accumulated immediately next to the plasma membrane. Mainly during the early period of damaging stress (6–10 d after growth stopped), depressions, invaginations, and rarer lesions occurred in the plasma membrane, sometimes associated with some of the IMP-free patches. In the same period, many nuclear envelopes had exceptionally large nuclear pores.Abbreviations E exoplasmic - IMP intramembranous particles - P protoplasmic  相似文献   

13.
The ultrastructure of Blastocystis hominis was investigated by the freeze-fracture method. Freeze-fracture replicas of the membranes of B. hominis and its organelles were studied with special regard to the density and distribution of the intramembranous particles (IMF's). On all membrane replicas, the concentration of IMF's on the protoplasmic face (P face) invariably was greater than on the exoplasmic face (E face). On the P face, IMP's were heterogeneously distributed in dense aggregates, alternating with particle-free, smooth surface areas. Occasionally, small depressions and protrusions were observed in these areas. On the membrane of the central vacuole, invaginations into the vacuole were frequently observed within the smooth surface regions. Since most of the granules in the central vacuoles had no IMF's, it seems likely that the intervacuolar granules were formed from these invaginations of the vacuole membrane. The width of the intermembrane space between the inner and outer membranes of the nuclear envelope was uneven, with regions of relative narrowness interspersed with regions of expansion. Nuclear pores were localized within the narrow portions of this space. A nucleus, apparently in the process of dividing, was observed enclosed within an intact outer membrane. Division of the outer membrane would then result in the formation of two discrete nuclei.  相似文献   

14.
An "apical endocytic complex" in the ileal lining cells of suckling rats is described. The complex consists of a continuous network of membrane-limited tubules which originate as invaginations of the apical plasma membrane at the base of the microvilli, some associated vesicles, and a giant vacuole. The lumenal surface of this tubular network of membranes and associated vesicles is covered with a regular repeating particulate structure. The repeating unit is an ~7.5-nm diameter particle which has a distinct subunit structure composed of possibly nine smaller particles each ~3 nm in diameter. The ~7.5-nm diameter particles are joined together with a center-to-center separation of ~15 nm to form long rows. These linear aggregates, when arranged laterally, give rise to several square and oblique two-dimensional lattice arrangements of the particles which cover the surface of the membrane. Whether a square or oblique lattice is generated depends on the center-to-center separation of the rows and on the relative displacement of the particles in adjacent rows. Four membrane faces are revealed by fracturing frozen membranes of the apical tubules and vesicles: two complementary inner membrane faces exposed by the fracturing process and the lumenal and cytoplasmic membrane surfaces revealed by etching. The outer membrane face reveals a distinct array of membrane particles. This array also sometimes can be seen on the outer (B) fracture face and is sometimes faintly visible on the inner (A) fracture face. Combined data from sectioned, negatively stained, and freeze-etched preparations indicate that this regular particulate structure is a specialization that is primarily localized in the outer half of the membrane mainly in the outer leaflet.  相似文献   

15.
The distribution of intramembrane particles in human sperm membranes has been explored with particular reference to the topographical region of the sperm cell and the membranes' fracture face. Conspicuous differences in the size, arrangement, density, and lateral mobility of intramembrane particles between some topographically distinct membrane domains are demonstrated. The greatest regionality is exhibited by the plasma membrane. In sperm head regions, it shows a significant variability and changes its particle distribution during culture in capacitating medium. In contrast, little variability and no changes during the incubation are seen in the acrosomal and nuclear membranes. Striking is the difference in particle distribution on the E face of the outer acrosomal membrane between the acrosomal and equatorial regions. It is suggested that the invariable regional difference in the organization of the outer acrosomal membrane may bear on the different behavior of its two main domains during sperm capacitation and acrosome reaction.  相似文献   

16.
When cells of Tetrahymena pyriformis, strain NT-1, were chilled from their growth temperature of 39.5 degrees C to lower temperatures, the plasma membrane, outer alveolar, nuclear, outer mitochondrial, food vacuolar, and endoplasmic reticulum membranes each responded in a fashion quite characteristic of the membrane type. In most cases a distinctive rearrangement of intramembrane particles, as discerned by freeze-fracture electron microscopy, began abruptly at a definitive temperature. By comparing the freeze-fracture patterns of membranes in cells grown at 39.5, 27, and 15 degrees C, it was shown that the initial particle rearrangement in a given membrane always occurred at a fixed number of degrees below the growth temperature of the cell. Gradual chilling of a cell grown at constant temperature induced these membrane changes first in the outer alveolar membrane, then, in order of decreasing response to temperature, in the endoplasmic reticulum, outer mitochondrial membrane, nuclear envelope, and vacuolar membrane. The normally stable relationships between the physical properties of the several membrane types could in some cases be reversed, but only temporarily, by fatty acid supplementation or during the initial phases of acclimation to growth at a different temperature. The system provides a unique opportunity to study the effects of environmental change upon the physical properties of several functionally distinct but metabolically interrelated membranes within a single cell.  相似文献   

17.
Epstein-Barr virus-producing cells were used as a model to analyze, with a fracture-immunolabel technique, the distribution, behavior on fracture, and extent of glycosylation of viral transmembrane glycoproteins at the inner nuclear membrane. Surface and fracture immunolabeling with two monoclonal antibodies directed against the carbohydrate or polypeptide portions of the major viral envelope glycoproteins gp350/220 showed the following. (i) The glycoproteins present on the inner and outer nuclear membranes were labeled only with the monoclonal antibody directed against the polypeptide chain, whereas over the surface of virus-producing cells and on mature virions the labeling was dense and uniformly distributed with both monoclonal antibodies. (ii) The glycoproteins were nonuniformly distributed only over the inner nuclear membranes; at the sites of viral budding, the glycoproteins showed a preferential partition with the protoplasmic face. Since fully glycosylated glycoproteins were not present on the nuclear membranes, our observations support the proposed model of herpesvirus maturation. The peculiar distribution and partition on fracture of the envelope glycoproteins on the inner nuclear membrane are similar to those of Sindbis virus envelope glycoproteins on the plasma membrane of infected cells. Therefore, our results suggest that inner nuclear membranes may behave like plasma membranes during viral assembly.  相似文献   

18.
The two unit membranes which envelope the endosymbiont of the trypanosomatid protozoon, Blastocrithidia culicis, were studied using the freeze-fracture technique. The distribution of the intramembranous particles on both fracture faces of the inner and outer membrane of the endosymbiont was analyzed in the replicas. The protoplasmic face of the inner membrane (PFi) had a higher density of membrane particles than that observed on the extracellular face (EFi), a pattern typical of plasma membranes. The extracellular face of the outer membrane (EFo) presented a density of membrane particles much higher than that observed on the P face of the outer membrane (PFo) a distribution significantly different from that found in the inner membrane of the endosymbiont and in the plasma membrane of the protozoon, but similar to that observed in Gram-negative bacteria. The data obtained support the idea that the endosymbiont of trypanosomatids represents a Gram-negative bacterium-like microorganism enveloped by two unit membranes and lacking a peptidoglycan layer and which lives in direct contact with the cytoplasm of the protozoon.  相似文献   

19.
Pearce, R. S. 1985. A frceze-fracture study of membranes ofrapidly drought-stressed leaf bases of wheat.—J. exp.Bol. 36: 1209-1221. Bases of expanding leaves were taken from well-watered or drought-hardenedwheat seedlings, and were progressively dehydrated (over ?–9h or, more slowly, for 24 h or 36 h) to between 76% and 5% ofthe water content of the turgid tissue. Damage was assessedby an ion-leakage test. The dehydrated tissues were freeze-fixedwithout rehydration. Patches free from intramembraneous particles(IMP) occurred in the plasma membrane, tonoplast and chloroplastenvelope of all the damaged leaf bases, and were mostly absentfrom undamaged tissues and controls. 15% of these patches appearedto have an ordered sub-structure. Lamellae with few or no IMP,were associated with some IMP-free patches of plasma membrane.Sometimes IMP-free patches and lamellae were associated withIMP-free folds. Groups of IMP-free lamellae occurred in thecytoplasm of the most severely stressed material. Vesicles andmembraneous sacs accumulated just below the plasma membranein some cells from stressed drought-hardened leaf bases. Depressions,‘lesions’ (mainly unusual circular discontinuities),and associated IMP-free patches, occurred in some plasma membranes,mostly in the stressed hardened tissues, including in non-damagedtissue. The results are related to an hypothesis previouslysuggested to explain damage due to extracellular freezing inwheat tissues: the stress causes cell dehydration and this inducesIM P-free patches leading to membrane reorganization (here expressedas IMP-free lamellae and folds) which results in leakage. Thepresent results confirm the role of cytoplasmic dehydrationin the formation of IMP-free patches and in other membrane changes. Key words: Drought stress, freezing stress, plasma membrane  相似文献   

20.
Fracture-label, a method that permits the cytochemical characterization of faces produced by freezefracture, was used to determine the partition and distribution of a glycolipid on membrane fracture faces of Acanthamoeba castellanii cells. After treatment with concanavalin A (Con A), the glycolipid (a lipophosphonoglycan, LPG) was labeled with colloidal gold coated with horseradish peroxidase. The label was abundant over exoplasmic fracture faces (face E) of plasma membranes, but absent from protoplasmic fracture faces (face P). We conclude that, in A. castellanii, glycolipid molecules are restricted to the outer half of the plasma membrane. This conclusion is confirmed by experiments with cells disrupted by freezing and thawing, where access of label to the cell interior did not result in labeling of the inner surface. Our results establish the exclusive localization of a glycolipid to the outer half of a plasma membrane. Fracture-label is proposed as a new technique to investigate the distribution and partition of glycolipids in plasma and intracellular membrane halves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号