首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We previously established lines of transgenic Xenopus laevis expressing green fluorescent protein (GFP) or GFP fusion proteins in the rod photoreceptors of their retinas under control of the X. laevis opsin promoter, which permits easy identification of transgenic animals by fluorescence microscopy. However, GFP tags can alter the properties of fusion partners, and in many circumstances a second selectable marker would be useful. The transgene constructs we used also encode a gene that confers resistance to the antibiotic G418 in cultured mammalian cells. In this study, we show that F2 transgenic offspring of these animals are more resistant to G418 toxicity than their non-transgenic siblings, as are primary transgenic X. laevis. G418 resistance can be used as a selectable marker in transgenic X. laevis, and possibly other aquatic transgenic animals.  相似文献   

2.
Xenopus laevis has been widely used for molecular, cellular, and developmental studies. With the development of the sperm-mediated transgenic method, it is now possible to study gene function during vertebrate development by using this popular model. On the other hand, like other animal species, it is labor intensive, and the maintenance of transgenic lines is expensive. In this article, we investigated the possibility of using sperm-cryopreservation as a means to preserve transgenic frog lines. We demonstrated that cryopreserved sperms are viable but not fertile under our in vitro fertilization (IVF) conditions. However, by microinjecting cryopreserved sperm nuclei, we successfully regenerated a transgenic line carrying a double promoter transgene construct, where the marker gene encoding the green fluorescent protein (GFP) is driven by the gamma-crystallin gene promoter and a gene of interest, encoding a fusion protein of GFP with the matrix metalloproteinase stromelysin-3 (ST3-GFP), is driven by a heat shock-inducible promoter. We demonstrated the functional transmission of the ST3-GFP transgene by analyzing the phenotype of the F1 animals after heat-shock to induce its expression. Our method thus provides an inexpensive means to preserve transgenic frog lines and a convenient way for distribution of transgenic lines. Furthermore, the ease with which to microinject nuclei compared to the technically demanding transgenesis procedure with variable outcome should facilitate more laboratories to use transgenic Xenopus laevis for functional studies in vivo. Mol. Reprod. Dev. 67: 65-69, 2004.  相似文献   

3.
In the present study, we examined the amphibian Xenopus laevis as a model for stable transgenesis and in particular targeted transgene protein expression to the melanotrope cells in the intermediate pituitary. For this purpose, we have fused a Xenopus proopiomelanocortin (POMC) gene promoter fragment to the gene encoding the reporter green fluorescent protein (GFP). The transgene was integrated into the Xenopus genome as short concatemers at one to six different integration sites and at a total of one to approximately 20 copies. During early development the POMC gene promoter fragment gave rise to GFP expression in the total prosencephalon, whereas during further development expression became more restricted. In free-swimming stage 40 embryos, GFP was found to be primarily expressed in the melanotrope cells of the intermediate pituitary. Immunohistochemical analysis of cryosections of brains/pituitaries from juvenile transgenic frogs revealed the nearly exclusive expression of GFP in the intermediate pituitary. Metabolic labelling of intermediate and anterior pituitaries showed newly synthesized GFP protein to be indeed primarily expressed in the intermediate pituitary cells. Hence, stable Xenopus transgenesis with the POMC gene promoter is a powerful tool to study the physiological role of proteins in a well-defined neuroendocrine system and close to the in vivo situation.  相似文献   

4.
Mislocalization of the photopigment rhodopsin may be involved in the pathology of certain inherited retinal degenerative diseases. Here, we have elucidated rhodopsin's targeting signal which is responsible for its polarized distribution to the rod outer segment (ROS). Various green fluorescent protein (GFP)/rhodopsin COOH-terminal fusion proteins were expressed specifically in the major red rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The fusion proteins were targeted to membranes via lipid modifications (palmitoylation and myristoylation) as opposed to membrane spanning domains. Membrane association was found to be necessary but not sufficient for efficient ROS localization. A GFP fusion protein containing only the cytoplasmic COOH-terminal 44 amino acids of Xenopus rhodopsin localized exclusively to ROS membranes. Chimeras between rhodopsin and alpha adrenergic receptor COOH-terminal sequences further refined rhodopsin's ROS localization signal to its distal eight amino acids. Mutations/deletions of this region resulted in partial delocalization of the fusion proteins to rod inner segment (RIS) membranes. The targeting and transport of endogenous wild-type rhodopsin was unaffected by the presence of mislocalized GFP fusion proteins.  相似文献   

5.
6.
The amphibian Xenopus laevis has been successfully used for many years as a model system for studying vertebrate development. Because of technical limitations, however, molecular investigations have mainly concentrated on early stages. We have developed a straightforward method for stage-specific induction of gene expression in transgenic Xenopus embryos [1] [2]. This method is based on the Xenopus heat shock protein 70 (Xhsp70 [3]) promoter driving the expression of desired gene products. We found that ubiquitous expression of the transgene is induced upon relatively mild heat treatment. Green fluorescent protein (GFP) was used as a marker to monitor successful induction of gene expression in transgenic embryos. We used this method to study the stage specificity of Wnt signalling function. Transient ectopic Wnt-8 expression during early neurulation was sufficient to repress anterior head development and this capacity was restricted to early stages of neurulation. By transient over-expression at different stages of development, we show that frizzled-7 disrupted morphogenesis sequentially from anterior to posterior along the dorsal axis as development proceeds. These results demonstrate that this method for inducible gene expression in transgenic Xenopus embryos will be a very powerful tool for temporal analysis of gene function and for studying molecular mechanisms of vertebrate organogenesis.  相似文献   

7.
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine involved in both acquired and innate immunity. MIF also has many functions outside the immune system, such as isomerase and oxidoreductase activities and control of cell proliferation. Considering the involvement of MIF in various intra- and extracellular events, we expected that MIF might also be important in vertebrate development. To elucidate the possible role of MIF in developmental processes, we knocked down MIF in embryos of the African clawed frog Xenopus laevis, using MIF-specific morpholino oligomers (MOs). For the synthesis of the MOs, we cloned a cDNA for a Xenopus homolog of MIF. Sequence analysis, determination of the isomerase activity, and x-ray crystallographic analysis revealed that the protein encoded by the cDNA was the ortholog of mammalian MIF. We carried out whole mount in situ hybridization of MIF mRNA and found that MIF was expressed at high levels in the neural tissues of normal embryos. Although early embryogenesis of MO-injected embryos proceeded normally until the gastrula stage, their neurulation was completely inhibited. At the tailbud stage, the MO-injected embryos lacked neural and mesodermal tissues, and also showed severe defects in their head and tail structures. Thus, MIF was found to be essential for axis formation and neural development of Xenopus embryos.  相似文献   

8.
9.
Noncoding Y RNAs are essential for the initiation of chromosomal DNA replication in mammalian cell extracts, but their role in this process during early vertebrate development is unknown. Here, we use antisense morpholino nucleotides (MOs) to investigate Y RNA function in Xenopus laevis and zebrafish embryos. We show that embryos in which Y RNA function is inhibited by MOs develop normally until the midblastula transition (MBT) but then fail to replicate their DNA and die before gastrulation. Consistent with this observation, Y RNA function is not required for DNA replication in Xenopus egg extracts but is required for replication in a post-MBT cell line. Y RNAs do not bind chromatin in karyomeres before MBT, but they associate with interphase nuclei after MBT in an origin recognition complex (ORC)-dependent manner. Y RNA-specific MOs inhibit the association of Y RNAs with ORC, Cdt1, and HMGA1a proteins, suggesting that these molecular associations are essential for Y RNA function in DNA replication. The MBT is thus a transition point between Y RNA-independent and Y RNA-dependent control of vertebrate DNA replication. Our data suggest that in vertebrates Y RNAs function as a developmentally regulated layer of control over the evolutionarily conserved eukaryotic DNA replication machinery.  相似文献   

10.
Li M  Rohrer B 《Cell research》2006,16(1):99-105
A vector-based RNAi expression system was developed using the Xenopus tropicalis U6 promoter, which transcribes small RNA genes by RNA polymerase Ⅲ. The system was first validated in a Xenopus laevis cell line, designing a short hairpin DNA specific for the GFP gene. Co-transfection of the vector-based RNAi and the GFP gene into Xenopus XR1 cells significantly decreased the number of GFP-expressing cells and overall GFP fluorescence. Vector-based RNAi was subsequently validated in GFP transgenic Xenopus embryos. Sperm nuclei from GFP transgenic males and RNAi construct-incubated-sperm nuclei were used for fertilization, respectively. GFP mRNA and protein were reduced by -60% by RNAi in these transgenic embryos compared with the control. This transgene-driven RNAi is specific and stable in inhibiting GFP expression in the Xenopus laevis transgenic line. Gene silencing by vector-based RNAi and Xenopus transgenesis may provide an alternative for 'repression of gene function' studies in vertebrate model systems.  相似文献   

11.
12.
13.
14.
FLP and Cre recombinase function in Xenopus embryos   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

15.
To identify novel genes involved in early development, and as proof-of-principle of a large-scale reverse genetics approach in a vertebrate embryo, we have carried out an antisense morpholino oligonucleotide (MO) screen in Xenopus tropicalis, in the course of which we have targeted 202 genes expressed during gastrula stages. MOs were designed to complement sequence between −80 and +25 bases of the initiating AUG codons of the target mRNAs, and the specificities of many were tested by (i) designing different non-overlapping MOs directed against the same mRNA, (ii) injecting MOs differing in five bases, and (iii) performing “rescue” experiments. About 65% of the MOs caused X. tropicalis embryos to develop abnormally (59% of those targeted against novel genes), and we have divided the genes into “synphenotype groups,” members of which cause similar loss-of-function phenotypes and that may function in the same developmental pathways. Analysis of the expression patterns of the 202 genes indicates that members of a synphenotype group are not necessarily members of the same synexpression group. This screen provides new insights into early vertebrate development and paves the way for a more comprehensive MO-based analysis of gene function in X. tropicalis.  相似文献   

16.
BMP signals play important roles in the regulation of diverse events in development and in the adult. In amniotes, like the amphibian Xenopus laevis, BMPs promote ventral specification, while chordin and other BMP inhibitors expressed dorsally in the Spemann's organizer play roles in establishment and/or maintenance of this region as dorsal endomesoderm. The activities of chordin are in turn regulated by the secreted proteolytic enzymes BMP1 and Xolloid. Recently, we and others have identified the protein twisted gastrulation (TSG) as a soluble BMP modulator that functions by modifying chordin activity. Overexpression and genetic analyses in Drosophila, Xenopus and zebrafish together with in vitro biochemical studies suggest that TSG might act as a BMP antagonist; but there is also evidence that TSG may promote BMP signaling. Here we report examination of the in vivo function of TSG in early Xenopus development using a loss-of-function approach. We show that reducing TSG expression using antisense TSG morpholino oligonucleotides (MOs) results in moderate head defects. These defects can be rescued both by a TSG that cannot be inhibited by the MO, and by the BMP antagonists chordin and noggin. Furthermore, while neither the onset of gastrulation nor the expression of marker genes are affected in early gastrulae, dorsal marker gene expression is reduced at the expense of expanded ventral marker gene expression beginning at mid to late gastrula stage. TSG-MO and Chd-MOs also cooperate to strongly repress head formation. Finally, we note that the loss of TSG function results in a shift in tissue responsiveness to the BMP inhibitory function of chordin in both animal caps and the ventral marginal zone, a result that implies that the activity of TSG may be required for chordin to efficiently inhibit BMPs in these developmental contexts. These data, taken together with the biochemistry and overexpression studies, argue that TSG plays an important role in regulating the potency of chordin's BMP inhibitory activity and TSG and chordin act together to regulate the extent of dorsoanterior development of early frog embryos.  相似文献   

17.
Now that transgenic strains of Xenopus laevis and X. tropicalis can be generated efficiently and with genomic sequence resources available for X. tropicalis, early amphibian development can be studied using integrated biochemical and genetic approaches. However, housing large numbers of animals generated during genetic screens or produced as novel transgenic lines presents a considerable challenge. We describe a method for cryopreserving Xenopus sperm that should facilitate low maintenance, long-term storage of male gametes. By optimising the cryoprotectant, the rates of cooling and thawing, and conditions for fertilisation, sperm from the equivalent of one-eighth of a X. laevis testis or of two X. tropicalis testes have been cryopreserved and used to fertilise eggs of both species after thawing. Sperm undergo a substantial loss of viability during a freeze-thaw cycle, but sufficient survive to fertilise eggs. Gametes of mutagenised frogs are being stored in connection with a screen for developmental mutations.  相似文献   

18.
Cone photoreceptor cells of fish retinae are arranged in a highly organized fashion. However, the molecular mechanisms underlying photoreceptor development and retinal pattern formation are largely unknown. Here we established transgenic lines of zebrafish carrying green fluorescent protein (GFP) cDNA with the 5.5-kb upstream region of the ultraviolet-sensitive cone opsin gene (SWS1). In the transgenic fish, GFP gene expression proceeded in the same spatiotemporal pattern as SWS1 in the retinae of embryos. In the adult retina, GFP expression was observed throughout the short single cone (SSC) layer where SWS1 is specifically expressed. Therefore, the transgenic fish provides an excellent genetic background to study retinal pattern formation, photoreceptor determination and differentiation, and factors regulating these processes and SSC-specific expression of SWS1.  相似文献   

19.
To become mature and infectious, many viruses and insects require proteolytic cleavage, which can be specifically inhibited by proteinase inhibitors. Oryzacystatin (OC), the first-described cystatin originating from rice seed, consists of two molecular species, OC-I and OC-II, both of which have antiviral activity. These intrinsic rice cystatins show a narrow inhibition spectrum and ordinarily are present in rice seeds at insufficient levels for inhibiting the cysteine proteinases of rice insect pests. In addition, our comparison of inhibitory activity (Ki value) showed that chicken cystatin (Ki 5 × 10-12 M) was more powerful than other cystatins, such as OC-I (Ki 3.02 × 10-8 M) and OC-II (l(i 0.83 × 10-8 M). Chicken cystatin also possesses a wide inhibitory spectrum against various cysteine proteinases. Here, we introduced the insecticidal chicken cystatin 8ene into rice plants to improve their insect resistance. Four highly expressive, independent transgenic lines were identified. Molecular analyses revealed that the transferred 8ene was expressed stably in the independent transgenic lines. Therefore, introducing the insecticidal cysteine proteinase inhibitor 8ene into rice plants can be part of a general development strategy for pest control.  相似文献   

20.
The frog transgenesis technique ultimately promises to make mutagenesis possible through random insertion of plasmid DNA into the genome. This study was undertaken to evaluate whether a gene trap approach combined with transgenesis would be appropriate for performing insertional mutagenesis in Xenopus embryos. Firstly, we confirmed that the transgenic technique results in stable integration into the genome and that transmission through the germline occurs in the expected Mendelian fashion. Secondly, we developed several gene trap vectors, using the green fluorescent protein (GFP) as a marker. Using these vectors, we trapped several genes in Xenopus laevis that are expressed in a spatially restricted manner, including expression in the epiphysis, the olfactory bulb and placodes, the eyes, ear, brain, muscles, tail and intestine. Finally, we cloned one of the trapped genes using 5' rapid amplification of cDNA ends polymerase chain reaction (RACE PCR). These results suggest that the transgenic technique combined with a gene trap approach might provide a powerful method for generating mutations in endogenous genes in Xenopus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号