首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The 1-deoxy-D-xylulose-5-phosphate (DXP) pathway (non-mevalonate pathway) leading to terpenoids via isopentenyl diphosphate (IPP) has been shown to occur in most bacteria and in all higher plants. Treatment with the antibiotic fosmidomycin, a specific inhibitor of DXP reductoisomerase, considerably inhibited the accumulation of the alkaloids ajmalicine, tabersonine, and lochnericine by Catharanthus roseus hairy root cultures in the exponential growth phase. However, fosmidomycin did not significantly affect alkaloid levels in stationary phase hairy root cultures. Feeding with 1-deoxy-D-xylulose, 10-hydroxygeraniol, or loganin resulted in significant increases in alkaloid production by exponential phase hairy root cultures. These results suggest that the DXP pathway is a major provider of carbon for the monoterpenoid pathway leading to the formation of indole alkaloids in C. roseus hairy roots in the exponential phase.  相似文献   

2.
Among the pharmacologically important terpenoid indole alkaloids produced by Catharanthus roseus are the anti-cancer drugs vinblastine and vincristine. These two drugs are produced in small yields within the plant, which makes them expensive to produce commercially. Metabolic engineering has focused on increasing flux through this pathway by various means such as elicitation, precursor feeding, and introduction of genes encoding specific metabolic enzymes into the plant. Recently in our lab, a feedback-resistant anthranilate synthase alpha subunit was over-expressed in C. roseus hairy roots under the control of a glucocorticoid inducible promoter system. Upon induction we observed a large increase in the indole precursors, tryptophan, and tryptamine. The current work explores the effects of over-expressing the anthranilate synthase alpha or alpha and beta subunits in combination with feeding with the terpenoid precursors 1-deoxy-D-xylulose, loganin, and secologanin. In feeding 1-deoxy-D-xylulose to the hairy root line expressing the anthranilate synthase alpha subunit, we observed an increase of 125% in h?rhammericine levels in the induced samples, while loganin feeding increased catharanthine by 45% in the induced samples. Loganin feeding to the hairy root line expressing anthranilate synthase alpha and beta subunits increases catharanthine by 26%, ajmalicine by 84%, lochnericine by 119%, and tabersonine by 225% in the induced samples. These results suggest that the terpenoid precursors to the terpenoid indole alkaloids are important factors in terpenoid indole alkaloid production.  相似文献   

3.
We have established Catharanthus roseus hairy root cultures transgenic for the rol ABC genes from T(L)-DNA of the agropine-type Agrobacterium rhizogenes strain A4. The rol ABC hairy root lines exhibit a wild-type hairy root syndrome in terms of growth and morphology on solid medium. However, they differ from wild-type hairy root lines in that they more frequently have excellent adaptability to liquid medium and do not appear to form calli during cultivation. Moreover, they do not produce detectable levels of mannopine and agropine which, in contrast, are often synthesized abundantly in wild-type hairy root lines. The absence of these opines does not appear to cause the rol ABC lines to have higher levels of terpenoid indole alkaloids than wild-type hairy root lines. Unlike wild-type lines, rol ABC lines produce very similar levels of total alkaloids despite wide variations in individual alkaloid contents. This work demonstrates that the three genes rol ABC are sufficient to induce high-quality hairy roots in Catharanthus roseus.  相似文献   

4.
The conversion of tabersonine to lochnericine and h?rhammericine was investigated in C. roseus hairy root cultures. The accumulation of lochnericine and h?rhammericine, like tabersonine, was associated with growth. Through the use of oxygenase inhibitors, 1-aminobenzotriazole (ABT), clotrimazole (CLOT), and 2.5-pyridinedicarboxylic acid (PCA), details of the metabolic pathway around tabersonine in hairy roots of C. roseus were elucidated. ABT specifically inhibited the formation of h?rhammericine, while CLOT inhibited the accumulation of lochnericine. Using jasmonic acid in combination with the inhibitors suggests an inducible P-450 enzyme responsible for the formation of h?rhammericine. The inhibitor study also revealed that both lochnericine and h?rhammericine are 'turned over' in hairy root cultures.  相似文献   

5.
Hyoscyamine and scopolamine are tropane alkaloids widely applied in medicine. Differences in alkaloid production and growth kinetics have been observed in Argentinian and Colombian ecotypes of Brugmansia candida hairy roots. The aim of this work was to analyze the production of key intermediates in tropane alkaloid synthesis in both ecotypes to determine differences in the biosynthetic pathway. Additionally, rolC gene expression was analyzed to determine its correlation with hairy root growth. The results showed a higher accumulation of polyamines in Colombian hairy roots, suggesting that there may be a rate-limiting enzyme in the last steps of hyoscyamine biosynthesis. Additionally, rolC gene expression was correlated with an improvement in hairy root growth, which supports the function of rol genes as growth modulators and suggests that metabolic engineering approaches involving rolC manipulation may be useful for the development of more efficient B. candida hairy root cultures for biotechnological applications.  相似文献   

6.
In the past two decades, hairy root research for the production of important secondary metabolites has received a lot of attention. The addition of knowledge to overcome the limiting culture parameters of the regulation of the metabolic pathway by specific molecules and the development of novel tools for metabolic engineering now offer new possibilities to improve the hairy root technique for the production of metabolites. Furthermore, engineering hairy roots for the production of animal proteins of therapeutic interest in confined and controlled in vitro conditions is seen as one of the exciting spin-offs of the technology. Recent progress made in the scale-up of the hairy root cultures has paved the way for industrial exploitation of this system. This review highlights some of the significant progress made in the past three years and discusses the potential implications of that research.  相似文献   

7.
Precursors from the terpenoid and tryptophan branches were fed to Catharanthus roseus to determine which of the two branches limits metabolic flux to indole alkaloids. The feeding of tryptophan at 17 days of the culture cycle produced auxin-like effects. Addition of low levels of auxin or tryptophan resulted in significant increases in flux to the indole alkaloids. Conversely, feeding higher levels of auxin or tryptophan resulted in increased branching and thickening of the hairy root cultures. A dramatic reduction in flux to the alkaloids was also observed. However, feeding tryptamine or terpenoid precursors had no effect. Therefore, neither pathway tested revealed to be rate-limiting during the late growth phase. Feeding of either geraniol, 10-hydroxygeraniol, or loganin at 21 days each resulted in significant increases in the accumulation of tabersonine. The addition of tryptophan or tryptamine had no effect during the stationary phase of the growth cycle. Thus, during the early stationary phase of growth the terpenoid pathway appears to be rate-limiting. Combined elicitation with jasmonic acid and feeding either loganin or tryptamine did not further enhance the accumulation of indole alkaloids.  相似文献   

8.
9.
10.
The induction of several secondary metabolites in plants is one of the most commonly observed effects after the external addition of methyl jasmonate (MeJA). After the elicitation of Catharanthus roseus hairy roots with different concentrations of MeJA, changes in the accumulation of alkaloids such as ajmalicine, serpentine, ajmaline and catharanthine were observed. In addition to the increased accumulation of alkaloids in the tissues, the root exudation of phytochemicals increased compared to that of the non-treated control hairy roots. Moreover, MeJA induced differential secretion of several C. roseus hairy root metabolites.  相似文献   

11.
萜类吲哚生物碱(terpeniod indole alkaloids, TIAs)是植物中产生的一类具有药理活性的次生代谢产物.药用植物长春花(Catharanthus roseus)因含有长春碱和长春新碱等重要的抗肿瘤萜类吲哚生物碱而成为研究TIAs次生代谢的主要模式植物.应用正、反向遗传学和各种代谢组学技术对长春花TIAs次生代谢途径及其调控进行了较深入的研究,相继鉴定了参与TIAs代谢途径调控的CrORCAs、CrMYCs、CrZCTs和CrWRKYs等转录因子,特别是发现茉莉素(jasmonates, JAs)介导TIAs生物合成的转录调控网络. 本文以长春花TIAs生物合成途径为模式,重点论述其代谢途径中的关键酶、参与调节的转录因子,尤其是茉莉素介导的调控网络及机制,解析植物中这些天然抗癌生物碱合成积累水平低的制约因素和组织细胞特异性,讨论基于这些新知识的长春花抗肿瘤TIAs代谢工程策略和工厂化绿色生产前景.  相似文献   

12.
Catharanthus roseus hairy root cultures, genetically transformed with Agrobacterium rhizogenes, produce a wide variety of indole alkaloids. The effect of sucrose, phosphate, nitrate, and ammonia concentrations on growth and indole alkaloid production of C. roseus hairy root cultures were studied by using statistical experimental designs and linear regression analysis. Contradictory effects of these nutrients on growth and indole alkaloid production were found. The maximal growth was obtained by having 77. 8 mg NaH(2)PO(4) . H(2)O/L and 1. 311 g KNO(3)/L in the medium, whereas the specific production of alkaloids was highest at the lowest levels of all the nutrients studied. The maximal dry weight was obtained with high values of sucrose and ammonia, but clear optimum concentrations could not be found. When having enough nutrients to support reasonable growth, it appeared difficult to affect the specific alkaloid production rates considerably. The growth (dry wt.) with the optimized nutrient concentrations in the medium was more than 50% better than in the control medium with about the same alkaloid production.  相似文献   

13.
14.
In plants, the indole pathway provides precursors for a variety of secondary metabolites. In Catharanthus roseus, a decarboxylated derivative of tryptophan, tryptamine, is a building block for the biosynthesis of terpenoid indole alkaloids. Previously, we manipulated the indole pathway by introducing an Arabidopsis feedback-insensitive anthranilate synthase (AS) alpha subunit (trp5) cDNA and C. roseus tryptophan decarboxylase gene (TDC) under the control of a glucocorticoid-inducible promoter into C. roseus hairy roots [Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004a. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol. Bioeng. 86, 718-727; Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004b. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabol. Eng. 6, 268-276]. Inducible expression of either or both transgenes did not lead to significant increases in overall alkaloid levels despite the considerable accumulation of tryptophan and tryptamine. In an attempt to more successfully engineer the indole pathway, a wild type Arabidopsis ASbeta subunit (ASB1) cDNA was constitutively expressed along with the inducible expression of trp5 and TDC in C. roseus hairy roots. Transgenic hairy roots expressing both trp5 and ASB1 show a significantly greater resistance to feedback inhibition of AS activity by tryptophan than plants expressing only trp5. In fact, a 4.5-fold higher concentration of tryptophan is required to achieve 50% inhibition of AS activity in plants overexpressing both genes than in plants expressing only trp5. In addition, upon a 3 day induction during the exponential phase, a trp5:ASB1 hairy root line produced 1.8 times more tryptophan (specific yield ca. 3.0 mg g(-1) dry weight) than the trp5 hairy root line. Concurrently, tryptamine levels increase up to 9-fold in the induced trp5:ASB1 line (specific yield ca. 1.9 mg g(-1) dry weight) as compared with only a 4-fold tryptamine increase in the induced trp5 line (specific yield ca. 0.3 mg g(-1) dry weight). However, endogenous TDC activities of both trp5:ASB1 and trp5 lines remain unchanged irrespective of induction. When TDC is ectopically expressed together with trp5 and ASB1, the induced trp5:ASB1:TDC hairy root line accumulates tryptamine up to 14-fold higher than the uninduced line. In parallel with the remarkable accumulation of tryptamine upon induction, alkaloid accumulation levels were significantly changed depending on the duration and dosage of induction.  相似文献   

15.
Metabolic flux analysis is a powerful diagnostic tool in metabolic engineering, and determination of biomass composition is indispensable to accurate flux evaluation. We report the elemental and biomolecular composition of Catharanthus roseus hairy roots, a pharmaceutically significant plant system and an important metabolic engineering target. The molecular formula of the organic material in the hairy roots was C12.0H22.7N0.4O7.6 during mid-exponential growth. The abundances of lipids, lignin, cellulose, hemicellulose, starch, protein, proteinogenic amino acids, mineral ash, and moisture in the biomass were quantified. Analysis of water-soluble components of the biomass with 1-D 13C and 2-D [1H,1H] correlation (COSY) NMR spectroscopy revealed that the water-soluble components were composed almost entirely of -glucans. Agropine, a frequently reported hairy root biomass component, was not detected. Our measurements of the biomass components quantified 83.6 +/- 9.3% (w/w) of the biomass. Together with previously reported abundances of indole alkaloids, we accounted for at least 85.9 +/- 11.6% (w/w) of the carbon in the biomass, which enabled the precise determination of 12 biomass synthesis fluxes.  相似文献   

16.
Metabolic engineering represents a promising approach to enhance the yield of valuable natural products from plants. A method to quantify flux through metabolite measurements is necessary for the analysis of native and modified pathways. Rather than focusing only on the accumulation of the final products, analyzing a wide range of secondary metabolites has significant advantages. We propose a model that organizes the flux analysis by grouping metabolites of similar biosynthetic origin. To this end, we have quantified temporal profiles of metabolites from several branches of the indole alkaloid pathway in Catharanthus roseus hairy root cultures. By analyzing these data, we are able to examine the distribution of flux around key branchpoints. Furthermore, this analysis provides crucial information such as an estimate of total flux to secondary metabolism.  相似文献   

17.
Hairy root cultures of Catharanthus roseus were established by infection of seedlings with Agrobacterium rhizogenes 15834. Approximately 150 transformants from four different. C. roseus cultivars were screened for desirable traits in growth and indole alkaloid production. Five hairy root clones grew well in liquid culture with doubling times similar to those reported for cell suspensions. Fast growing clones had similar morphologies, characterized by thin, straight, and regular branches with thin tips. The levels of key alkaloids, ajmalicine, serpentine, and catharanthine, in these five clones, also compared well with literature data from cell suspensions, yet HPLC and GC-MS data indicate the presence of vindoline in two clones at levels over three orders of magnitude greater than the minute amounts reported in cell culture. These results suggest that further optimization may result in hairy roots as a potential source of vindoline and catharanthine, the two monomers necessary to synthesize that antineoplastic drug, vinblastine. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
19.
Reliable measurements of intracellular metabolites are useful for effective plant metabolic engineering. This study explored the application of in situ 31P and 13C NMR spectroscopy for long-term measurements of intracellular pH and concentrations of several metabolites in glycolysis, glucan synthesis, and central carbon metabolic pathways in plant tissues. An NMR perfusion reactor system was designed to allow Catharanthus roseus hairy root cultures to grow for 3-6 weeks, during which time NMR spectroscopy was performed. Constant cytoplasmic pH (7.40+/-0.06), observed during the entire experiment, indicated adequate oxygenation. 13C NMR spectroscopy was performed on hairy root cultures grown in solutions containing 1-13C-, 2-13C-, and 3-13C-labeled glucose in separate experiments and the flow of label was monitored. Activities of pentose phosphate pathways, nonphotosynthetic CO2 fixation, and glucan synthesis pathways were evident from the experimental results. Scrambling of label in glucans also indicated recycling of triose phosphate and their subsequent conversion to hexose phosphates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号