首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
低分子量有机酸对土壤磷活化及其机制研究进展   总被引:12,自引:0,他引:12  
近30年来,过量施用磷肥导致土壤磷素累积继而引起水体富营养化等问题备受关注。植物根系分泌的低分子量有机酸能活化土壤积累态磷,提高土壤磷素有效性,已成为研究热点问题之一。本文结合国内外已有研究,从低分子量有机酸的类型、添加浓度、土壤类型和土壤磷素水平等方面总结了低分子量有机酸活化土壤无机磷与有机磷的效果,并通过对比土壤磷活化试验前后各形态磷的变化探讨了低分子量有机酸对土壤磷的活化机制。低分子量有机酸对土壤无机磷的活化主要是促进了土壤中有效性低的无机磷形态向有效性较高的形态转化,而低分子量有机酸对土壤有机磷的活化结论尚不一致,活化机制也不明确,仍需进一步研究。未来研究应关注低分子量有机酸与磷肥之间的协同增效机制,并进一步探索低分子量有机酸对土壤磷素(特别是有机磷)的活化机制。  相似文献   

2.
通过盆栽试验,研究了氮镉交互作用对苋菜(Amaranthus mangostanus L)土壤酶活性的影响,结果表明:氮镉交互作用有促进土壤蔗糖酶活性、脲酶活性的趋势和抑制蛋白酶活性、酸性磷酸酶活性的趋势。  相似文献   

3.
镉在有机酸存在时对红壤中微生物生物量的影响   总被引:13,自引:6,他引:7  
在预培红壤中加入定量的有机酸和不同浓度的Cd ,2 5℃培养 14d ,测定土壤微生物生物量C(Cmic)、N(Nmic) ,结果表明 ,存在有机酸时 ,土壤中Cmic和Nmic随着Cd浓度的增加而降低 ;Cmic/Nmic随着Cd浓度的增加而升高 .施加低分子量有机酸的土壤中 ,Cd浓度高于 2 5mg·kg-1土时 ,土壤中Cmic和Nmic均比未加有机酸时低 ,说明此时低分子量有机酸助长Cd的毒性 ,而Cd浓度低于 2 5mg·kg-1土时 ,土壤中Cmic和Nmic均比未加有机酸时高 ,说明此时低分子量有机酸可降低部分Cd的毒性 ;施加胡敏酸的土壤中 ,土壤中Cmic和Nmic均比未加有机酸时高 ,说明胡敏酸降低Cd的毒性并提供N源 .不含Cd时 ,加入有机酸导致土壤中Cmic和Nmic增加 ,其中胡敏酸最明显  相似文献   

4.
采用土培试验方法研究了低分子量有机酸(柠檬酸、草酸、苹果酸及其混合酸)对大豆磷积累和土壤无机磷形态转化的影响。结果表明:低分子量有机酸促进了大豆植株磷的吸收积累,大豆不同生育时期,不同有机酸对大豆磷的吸收积累均有促进作用,但作用效果有差异;外加低分子量有机酸使无机磷总量、难溶态磷(Ca10-P、Al-P和O-P)含量均显著降低,而可溶态磷的Ca8-P含量显著增加,柠檬酸和草酸使Ca2-P含量显著增加,表明低分子量有机酸促进了土壤难溶态磷向可溶态磷转化,作用大小顺序为柠檬酸>草酸>混合酸>苹果酸;同时,大豆根系分泌物也促进部分难溶态磷向可溶态磷转化,使无机磷总量、除Ca2-P外的其他无机磷组分均有所降低,按磷释放比例的大小来看,对大豆吸磷的贡献大小顺序为O-P>Fe-P>Ca10-P>Al-P>Ca8-P>Ca2-P.  相似文献   

5.
水生维管束植物受镉污染后的生理变化及受害机制初探   总被引:32,自引:0,他引:32  
镉污染后的水生维管束植物其叶绿素a/b值随水体镉浓度的增加而下降,叶绿素含量与镉浓度呈极显著的负相关。叶细胞膜透性与镉浓度呈极显著的正相关。不同抗性种叶片可溶性糖含量均随镉浓度增加而升高,但抗性种的增加率要小得多。镉对根系脱氢酶的活性产生抑制,且随镉浓度升高,活性相应下降。对过氧化物酶同工酶谱也产生明显的影响。这些在环境监测中可作为生理指标。凝胶层析表明,具有抗性的凤眼莲的可溶性成分中,存在着高分子镉复合物(>70,000)、分子量为13,300的镉复合物和低分子量镉螯合物及游离态镉。不抗种的紫背萍缺乏第二种镉复合物。  相似文献   

6.
卢豪良  严重玲 《生态学报》2007,27(10):4173-4181
应用电感耦合等离子体质谱(ICP-Ms)与高效液相色谱(HPLC)分别对福建漳江口红树林湿地不同土壤结构(砂质与泥质)根际与非根际沉积物中重金属(Cu,Pb,Cd,Zn)含量,以及生长于砂质与泥质滩涂上的红树植物秋茄(Kandelia candel(L)Druce))幼苗根系分泌物中的低分子量有机酸进行测定。在室内模拟秋茄根系分泌的低分子量有机酸,作为重金属提取剂提取沉积物中可溶解态与碳酸盐结合态重金属,并与欧盟标准物质局(BCR)连续提取法相比较,探讨红树根系分泌的低分子量有机酸对红树林沉积物重金属生物有效性的影响。研究结果表明:漳江口红树林泥质沉积物中重金属含量大于砂质沉积物,根际沉积物大于非根际沉积物。两样地沉积物中重金属的赋存形态主要以铁锰氧化物结合态为主,根际沉积物中可交换态与碳酸盐结合态重金属含量均大于非根际沉积物。秋茄根系分泌低分子量有机酸为甲酸,丁酸,苹果酸,柠檬酸,乳酸。不同土壤结构对秋茄根系分泌的苹果酸,柠檬酸,乳酸有显著影响(P<0.05)。以低分子量有机酸作为提取剂对沉积物中可溶解态与碳酸盐结合态重金属的提取率表现为:柠檬酸>混合酸>苹果酸>乳酸>乙酸,低分子量有机酸对红树林沉积物重金属的生物有效性有促进作用。  相似文献   

7.
施用尿素对土壤中Cd、Pb形态分布及植物有效性的影响   总被引:3,自引:0,他引:3  
采用室外盆栽试验,研究了在镉(25mg·kg-1)、铅(1000mg·kg-1)单一污染及其复合污染的土壤中,施用不同剂量尿素(0、100、200、400、800mg·kg-1)对小麦根际和非根际土壤镉、铅形态、小麦植物体镉、铅浓度的影响,为重金属污染土壤的防治提供依据。结果表明:增加尿素施用水平显著提高了小麦不同部位镉、铅浓度,尿素施用促进小麦对镉、铅的吸收与其对土壤中镉、铅形态分布的影响紧密相关,尿素施用引起土壤pH下降,提高土壤中交换态镉、铅含量,而交换态是最易被植物吸收利用的部分,这是尿素施用提高镉、铅植物有效性的主要原因;与单一污染相比,镉、铅复合污染抑制了小麦对铅的吸收,但促进了小麦对镉的吸收。  相似文献   

8.
磷肥对土壤中镉的植物有效性影响及其机理   总被引:23,自引:0,他引:23  
为寻求保障镉污染农田稻米质量安全的有效措施,采用盆栽方法研究了低镉磷肥(Cd<0.2 mg·kg-1)及不同施磷量(0.10、0.20 g P2O5·kg-1)对污染稻田土壤中(潮泥田)镉的植物有效性影响,并探讨了相关机理.结果表明:在0.10 g·kg-1磷剂量水平下,与对照(无磷肥)相比,钙镁磷和磷酸二氢钾处理显著提高了土壤pH和降低了土壤镉活性,钙镁磷和过磷酸钙处理显著降低了水稻对镉的吸收累积;当施磷量增至0.20 g·kg-1时,磷酸氢钙处理显著提高了土壤pH和降低了土壤镉活性,钙镁磷、磷酸二氢钾和磷酸氢钙处理下DTPA提取态镉含量降低11.8%、9.8%和11.8%,NH4OAc提取态镉含量降低9.5%、7.1%和7.1%;5种磷肥处理均显著降低了水稻茎叶中镉含量(降幅24.9% ~ 50.8%),除磷酸氢钙处理外,糙米镉含量的降幅均达到显著水平,钙镁磷和过磷酸钙处理下糙米镉含量接近国家粮食卫生标准(GB 2715-2005).5种供试磷肥中,能提高土壤pH的磷肥(钙镁磷、磷酸二氢钾和磷酸氢钙)降低土壤镉有效性的效果显著,含钙磷肥(钙镁磷和过磷酸钙)降低水稻镉积累的效果较好.磷肥化学性质的差异可能是影响其效果的主要原因,选择碱性含钙磷肥对控制污染农田中作物吸收累积镉更有效.  相似文献   

9.
于昕  卜文俊  朱琳 《生态学杂志》2012,31(6):1585-1590
为寻求保障镉污染农田稻米质量安全的有效措施,采用盆栽方法研究了低镉磷肥(Cd<0.2 mg·kg-1)及不同施磷量(0.10、0.20 g P2O5·kg-1)对污染稻田土壤中(潮泥田)镉的植物有效性影响,并探讨了相关机理.结果表明: 在0.10 g·kg-1磷剂量水平下,与对照(无磷肥)相比,钙镁磷和磷酸二氢钾处理显著提高了土壤pH和降低了土壤镉活性,钙镁磷和过磷酸钙处理显著降低了水稻对镉的吸收累积;当施磷量增至0.20 g·kg-1时,磷酸氢钙处理显著提高了土壤pH和降低了土壤镉活性,钙镁磷、磷酸二氢钾和磷酸氢钙处理下DTPA提取态镉含量降低11.8%、9.8%和11.8%,NH4OAc提取态镉含量降低9.5%、7.1%和7.1%;5种磷肥处理均显著降低了水稻茎叶中镉含量(降幅24.9%~50.8%),除磷酸氢钙处理外,糙米镉含量的降幅均达到显著水平,钙镁磷和过磷酸钙处理下糙米镉含量接近国家粮食卫生标准(GB 2715-2005).5种供试磷肥中,能提高土壤pH的磷肥(钙镁磷、磷酸二氢钾和磷酸氢钙)降低土壤镉有效性的效果显著,含钙磷肥(钙镁磷和过磷酸钙)降低水稻镉积累的效果较好.磷肥化学性质的差异可能是影响其效果的主要原因,选择碱性含钙磷肥对控制污染农田中作物吸收累积镉更有效.  相似文献   

10.
采用盆栽试验方法,分别设置0(对照,不添加镉)、30、60、90、120、150、180、210mg·kg-1共8个土壤镉处理水平,研究土壤不同镉水平对马缨丹(Lantana comara L.)生长及其抗氧化酶活性的影响,以探讨马缨丹对镉胁迫的生理响应机制。结果显示:(1)随着土壤镉处理浓度的升高,马缨丹干重呈先升高后降低的趋势,30mg·kg-1镉处理能促进植株的生长,而浓度高于60mg·kg-1时显著抑制马缨丹的生长。(2)马缨丹叶片和根系中O-·2产生速率、H2O2和MDA含量及电解质渗漏率均随土壤镉处理浓度的升高和胁迫时间的延长逐渐升高,胁迫90d时,叶片和根系中O-·2产生速率、H2O2和MDA含量及电解质渗漏率分别在镉浓度高于60和30mg·kg-1时显著低于对照。(3)叶片和根系抗氧化酶SOD、POD、APX和CAT活性随着土壤镉处理浓度的增加大体呈先升高后降低的趋势,并在镉浓度分别高于90和60mg·kg-1时,叶片和根系抗氧化酶活性显著低于对照。研究表明,低浓度镉处理土壤能促进马缨丹植株生长,而高浓度镉处理土壤显著降低了马缨丹体内抗氧化酶活性,导致活性氧大量积累,引起严重的膜脂过氧化伤害,从而显著抑制马缨丹植株的生长。  相似文献   

11.
The objectives of this paper were to determine (1) if lowland rice (Oryza sativa L.) plants respond similarly to low zinc (Zn) and phosphorus (P) availability by increased root exudation of low-molecular weight organic anions (LMWOAs) and (2) if genotypic variation in tolerance to low soil supply of either Zn or P is related to LMWOA exudation rates. Exudation of LMWOAs can increase bioavailability of both Zn and P to the plant, through partly similar chemical mechanisms. We used seven lowland rice genotypes and showed in two experiments that genotypes that grow relatively well on a soil with low Zn availability also grow well on a sparingly soluble Ca-phosphate (r = 0.80, P = 0.03). We measured exudation rates of LMWOAs on nutrient solution and found that both Zn and P deficiency induced significant increases. Among the LMWOAs detected oxalate was quantitatively the most important, but citrate is considered more effective in mobilizing Zn. Citrate exudation rates correlated with tolerance to low soil levels of Zn (P=0.05) and P (P = 0.07). In a low-Zn-field we found an increased biomass production at higher plant density, which is supportive for a concentration-dependent rhizosphere effect on Zn bioavailability such as LMWOA exudation. We, for the first time, showed that tolerance to low Zn availability is related to the capacity of a plant to exude LMWOAs and confirmed that exudation of LMWOAs must be regarded a multiple stress response.  相似文献   

12.
Cadmium (Cd) accumulation has been found to vary between cultivars of durum wheat (Triticum turgidum var. durum), and it is hypothesized that low-molecular-weight organic acids (LMWOAs) produced at the soil-root interface (rhizosphere) may play an important role in the availability and uptake of Cd by these plants. The objective of this study, therefore, was to (1) investigate the nature and quantity of LMWOAs present in the rhizosphere of durum wheat cultivars Arcola (low Cd accumulator) and Kyle (high Cd accumulator) grown in three different soils: Yorkton, Sutherland and Waitville, and (2) determine the relationship between Cd accumulation in these plants and LMWOAs present in the rhizosphere. Plants were grown for two weeks in pot-cultures under growth chamber conditions. Oxalic, fumaric, succinic, L-malic, tartaric, citric, acetic, propionic and butyric acids were found and quantified in the water extracts of rhizosphere soil, with acetic and succinic acids being predominant. No water extractable LMWOAs were identified in the bulk soil. Total amount of LMWOAs in the rhizosphere soil of the high Cd accumulator (Kyle) was significantly higher than that for the low Cd accumulator (Arcola) in all three soils. Furthermore, large differences in amounts of LMWOAs were found in the rhizosphere soil for the same cultivars grown in different soils and followed the pattern: Sutherland > Waitville > Yorkton. Extractable soil Cd (M NH4Cl) and Cd accumulation in the plants also followed the same soil sequence as LMWOA production. Cadmium accumulation by the high and low Cd accumulating cultivars was proportional to the levels of LMWOAs found in the rhizosphere soil of each cultivar. These results suggest that the differing levels of LMWOAs present in the rhizosphere soil played an important role in the solubilization of particulate-bound Cd into soil solution and its subsequent phytoaccumulation by the high and low Cd accumulating cultivars.  相似文献   

13.
Chen  Meng-Chun  Wang  Ming-Kuang  Chiu  Chih-Yu  Huang  Pan-Ming  King  Hen-Biau 《Plant and Soil》2001,231(1):37-44
Low molecular weight organic acids (LMWOAs) derived from root exudates, decomposing organic matter, and other sources are important ligands. The species of these LMWOAs in the Tsuga rhizosphere soil (TRS), and Yushania rhizosphere soil (YRS), and bulk soil (BS) from an alpine forest region were identified. LMWOA and organic functional groups were used to those fresh twigs and leaves, litters, and roots as comparison. The objectives of this study were to (i) develop a method that could be used to determine LMWOAs in soil solution by gas chromatography (GC), (ii) assess methods for processing LMWOAs in soil samples, and (iii) determine the relative proportions of organic carbon functional groups in the TRS, YRS and BS, and fresh plant materials with13C nuclear magnetic resonance (13C NMR) analysis. The proportion of organic acid contents followed the order of YRS > TRS > BS, and also showed significant differences (P < 0.05) from GC analysis. The amounts of malonic, fumaric and succinic acids in the YRS samples were greater than in the TRS and BS. Samples analyzed after 1 month of deep freeze storage (–24°C) showed no signs of decomposition. The proportion of organic functional groups in the rhizosphere and bulk soils quantified by 13C NMR analyses followed the general order: alkyl-C > O-alkyl-C > N-alkyl-C > acetal-C > aromatic-C > carboxylic-C > phenolic-C.  相似文献   

14.
ABSTRACT

The rhizosphere soils of two durum wheat (Triticum turgidum var. durum L.) cultivars Kyle and Areola grown in two selected soils of southern Saskatchewan were collected both at 2-week and 7-week plant growth stages. The cadmium availability index (CAI), determined as M NH4CI-extractable Cd, pH and the distribution of the particulate- bound Cd species of the soils were carried out and the data were discussed in comparison with those of the corresponding bulk soil. At the 2-week growth stage, the pH of the rhizosphere soil was less than that of the corresponding bulk soil and the CAI values were higher in the rhizosphere soil, indicating that more Cd was complexed with the low-molecular-weight organic acids (LMWOAs) at the soil-root interface and was extractable by M NH4CI. Compared with the bulk soils, the CAI values were 2–9 times higher in the soil rhizosphere of the plots fertilized with Idaho monoammonium phosphate fertilizer at 2-week growth stage, which is attributed to the combined effects of the Cd introduced into the soil rhizosphere from the fertilizer (Cd content of the fertilizer was 144 mg kg?1) and complexation reactions of phosphate and LMWOAs with soil Cd. At 7-week plant growth stage, such differences were not observed. The increased amounts of carbonate-bound and metal-organic complex-bound Cd species of the rhizosphere soils are due to the increased amounts of carbonate, a product of plant respiration, and the LMWOAs at the soil-root interface, respectively. Simple correlation analysis of the data showed that the CAI of the rhizosphere soils of the control plots correlated at least two orders of magnitude better with the metal-organic complex-bound Cd whereas the CAI of the rhizosphere soils treated with Idaho phosphate correlated better with carbonate-bound Cd species in comparison to other species.  相似文献   

15.
Summary Decomposition of humic acids suspended in a soil water-extract under various conditions of oxygen availability (aerobic, anaerobic, alternating aerobic/anaerobic) led to the formation of fulvic acids, lower molecular weight compounds, and humin, a more complex mixture of insoluble compounds. The transformation of humic acids and formation of new humic compounds were higher under aerobic conditions than under either anaerobic or alternating aerobic/anaerobic ones.Although subjected to decomposition under greatly differing conditions of oxygen availability, the residual humic acids showed essentially the same types of chemical alterations, an increase of functional groups containing oxygen and a decrease of hydrolysable ternary and quarternary fractions.  相似文献   

16.
Changes in humic matter of overburden and replaced topsoils receiving four different treatment combinations of fertilizer and an organic amendment were investigated on reclaimed surface mine spoil in southeastern Montana. Nine years after revegetation, the maximum increases of organic matter and humic acid content, respectively, were 53% and 23% on overburden soils and 14% and 16% on replaced topsoils. The C:N ratio increased in the overburden soil from 11.0 to 13.5 with treatments; in the topsoil the C:N ratio changes were variable. C:N ratios of 9–11 were characteristic of humic acids, with no consistent relation to treatments. The increases in the soil organic matter, humic matter, and total soil nitrogen content were greater than the amounts of C and N added as amendments, probably because of the increased plant litter availability and retention in soil and possible nitrogen input by dinitrogen fixation.  相似文献   

17.
Nigam  Rashmi  Srivastava  Shalini  Prakash  Satya  Srivastava  M. M. 《Plant and Soil》2001,230(1):107-113
The present work highlights metal-organic acid interactions with special reference to their plant availability. Pot experiments were conducted to investigate the effect of various organic (carboxylic and amino) acids on the uptake and translocation of root-absorbed Cd by maize (Zea mays) plants grown in sand and soil culture. Statistically significant increases in Cd accumulation from Cd-treated plants in the presence of increasing concentrations of organic acids, suggest the existence of Cd-organic acid interactions in the soil-plant system. In order to support the above hypothesis of formation of organically bound Cd, separate experiments were performed to synthesize and estimate its various forms viz. cationic, anionic and neutral. The chemical nature of the organically bound forms was ascertained by electrophoretic experiments. Amino acids have been found to be less effective in the mobilisation of cadmium compared to carboxylic acids. The results are discussed on the basis of the potential of organic acids to form complexes with Cd.  相似文献   

18.
Persistent Organic Pollutants (POPs) in the soil–plant system were tracked from their origin in the bulk soil, into the rhizosphere soil pore water, to the xylem sap, and up to the aerial plant tissue. Specifically, the profiles of both chiral and achiral components of technical chlordane along this continuum were examined in detail for members of the Cucurbitaceae family: Cucurbita pepo L. subsp. pepo (“Black Beauty” true zucchini), Cucurbita pepo L. intersubspecific cross (“Zephyr” summer squash), and Cucumis sativus (“Marketmore” cucumber). The experiments were based on the use of mini-rhizotrons for collection and analysis of rhizosphere soil pore water for organic pollutants, as well as for low molecular weight organic acids (LMWOAs). In addition, the xylem sap and aerial plant tissue for intact, homografted, and heterografted C. pepo “Black Beauty” and C. sativus “Marketmore” plants were compared. The data indicate that profiles of the chlordane components in the pore water show no alteration in chiral patterns from those in the bulk soil and may be interpreted by physicochemical partitioning coefficients. Low molecular weight organic acids (LMWOAs) in the rhizosphere were observed to have a minor impact on bioavailability of the pollutants. However, once the pollutants cross the root membrane, major distinctive uptake and enantioselective patterns are apparent in the xylem sap, which are maintained in the aerial tissue. These in planta patterns are based on plant genotype. Specifically, grafting experiments with compatible heterografts of C. pepo and C. sativus establish that the chiral patterns are fully dependent on the plant root. The genotypic dependence of the data suggests possible mechanisms for phytoaccumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号