首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
黑色素瘤具有恶性程度高、转移早、死亡率高等特点,而且对常规放射治疗不敏感,因此,提高黑色素瘤细胞的辐射敏感性对于此种疾病的治疗具有重要意义。本研究中构建了辐射诱导型过表达Ras相关的C3肉毒素底物2(RAC2)和敲低RAC2的黑色素瘤细胞系,通过测定其辐照后的克隆存活率、γH2AX foci水平、ROS产额以及NADPH氧化酶活性研究了RAC2基因对于黑色素瘤细胞辐射敏感性的影响及可能的作用机制,发现RAC2能通过增强NADPH氧化酶活性和提高ROS产额显著增强黑色素瘤细胞的辐射敏感性。  相似文献   

3.
细胞因子是一类重要的生命调节因子,参与机体的多种机能活动,在众多已发现的细胞因子中,人单核细胞趋化蛋白-1(MCP-1),又称单核细胞趋化激活因子(MCAF),正逐渐引起人们的注意。它可由体内的多种细胞产生,如:单核细胞、内皮细胞、成骨细胞、平滑肌细胞、表皮细胞和一些肿瘤细胞。MCP-1不仅能趋化单核细胞,而且还能激活单核细胞参与机体的免疫应答,在机体的防御,炎症恢复及抗肿瘤等方面起重要作用。目前大量研究证实,在人类多种疾病中都发现了MCP-1的存在。本文就其在临床方面的研究进展综述如下。  相似文献   

4.
CCR2介导MCP-1诱导的人内皮细胞凋亡   总被引:1,自引:0,他引:1  
本室前期工作发现,单核细胞趋化蛋白-1(MCP-1)可诱导人内皮细胞(hVECs)凋亡.为进一步揭示MCP-1诱导凋亡分子机理,首先观察MCP-1对hVECs CC类趋化因子受体2(C-C motifchemokine receptor-2,CCR2)蛋白表达的影响.Western印迹结果显示,MCP-1以剂量依赖方式诱导CCR2在hVECs的表达.以脂质体为载体的CCR2反义寡核苷酸序列转染hVECs后,激光共聚焦显微镜及膜联蛋白(annexin)V-FITC/PI双染流式细胞术显示,CCR2反义寡核苷酸转染hVECs48h后可明显降低CCR2蛋白质的表达(P0.05),抑制MCP-1诱导的hVECs凋亡(P0.01).反义CCR2抑制凋亡结果与加入CCR2阻断剂RS102895后细胞凋亡测定结果一致.上述结果表明,MCP-1的主要受体CCR2介导了MCP-1诱导的hVECs凋亡.  相似文献   

5.
研究钙离子(Ca~(2 ))在重金属铜诱导的小麦根质膜NADPH氧化酶活性变化中作用的结果表明,Ca~(2 )以剂量依赖的方式提高NADPH氧化酶活性,且这种增加效应可完全为Ca~(2 )螯合剂乙二醇-双-(2-氨基乙基)四乙酸(EGTA)所抑制.用Ca~(2 )通道阻断剂氯化镧和异搏定以及EGTA预处理小麦根可抑制铜诱导的NADPH氧化酶活性升高,这类抑制效应也是剂量依赖的。这些结果说明Ca~(2 )参与铜诱导小麦根NADPH氧化酶活性和活性氧产生的调节过程.  相似文献   

6.
MCP-1及其在相关疾病中的治疗措施   总被引:4,自引:0,他引:4  
娄桂予 《生命的化学》2004,24(3):238-240
单核细胞趋化蛋白1(MCP-1)属于趋化因子的CC亚家族,MCP-1与其受体CCR2相结合,参与了多种炎性疾病的发生。该从抑制MCP-1的表达、MCP-1的拮抗剂、CCR2的拮抗剂、DNA疫苗几方面综述了针对MCP-1的治疗措施。  相似文献   

7.
剪切力对单核细胞趋化蛋白-1的影响   总被引:2,自引:0,他引:2  
单核细胞趋化蛋白-1(MCP-1)能趋化单核细胞在内皮细胞下聚集,是动脉粥样硬化最早期的病理改变之一.从生物力学的角度对体外培养的人脐静脉内皮细胞(HUVEC)合成和分泌MCP-1的规律作了研究.通过流动小室,HUVEC给予0.4,1.0, 2.0 N/m2的剪应力,运用免疫组化,图象处理及ELISA方法测出不同时间胞浆及灌流液中MCP-1的含量,结果表明HUVEC合成和分泌MCP-1是随剪切力和时间变化而变化的.该工作为进一步理解剪切力诱导动脉粥样硬化的发生提供实验数据.  相似文献   

8.
Han YL  Yu HB  Yan CH  Kang J  Meng ZM  Zhang XL  Li SH  Wang SW 《生理学报》2006,58(3):207-216
为阐明Rac1蛋白在人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)衰老中的作用及分子机制,我们采用持续缺氧的方法诱导内皮细胞衰老,检测缺氧前后内皮细胞衰老标志基因SA-β-Gal和PAI-1的表达、细胞周期分布和细胞增殖情况,同时分析缺氧前后细胞内Rac1蛋白的表达.结果显示,持续缺氧96 h后,HUVECs体积变大,细胞浆内颗粒和空泡增多,SA-β-Gal活性明显增加,PAI-1基因表达升高,细胞发生G1期阻滞,细胞增殖受抑,活化型Rac1蛋白表达上调,提示持续缺氧诱导的内皮细胞衰老可能与Rac1蛋白的活化有关.为进一步明确内皮细胞衰老与Rac1蛋白的关系,应用逆转录病毒将持续活化型Rac1(V12Rac1)和主导抑制型Rac1(N17Rac1)基因分别瞬时感染HUVECs,比较三种HUVECs(HUVECs,V12Rac1-HUVECs,N17Rac1-HUVECs)缺氧后的衰老变化,并分析其下游调控分子--血清反应因子(serum response factor,SRF)的表达和定位变化.研究发现,缺氧培养V12Rac1-HUVECs 48 h即可引起细胞衰老,表现为SA-β-Gal活性明显增加,PAI-1基因表达升高,细胞出现明显的G1期阻滞并且细胞增殖受抑,其改变与缺氧96 h的HUVECs相似;而N17Rac1明显抑制缺氧引起的内皮细胞衰老发生.上述结果说明,Rac1蛋白活化可以加速缺氧诱导的内皮细胞衰老,而抑制Rac1蛋白的活性则可抑制缺氧诱导的内皮细胞衰老.为进一步研究Rac1蛋白引起内皮细胞衰老的机制,通过免疫荧光染色及Western blot分析检测三种细胞缺氧处理后SRF的表达,发现:与HUVECs细胞比较,V12Rac1引起缺氧48 h HUVECs核蛋白中SRF的表达明显下降,SRF入核转位受到明显抑制;而N17Rac1感染后,缺氧HUVECs细胞核蛋白中SRF表达明显增多.上述结果提示:缺氧状态下Rac1蛋白活化能够明显加速HUVECs衰老,而抑制Rac1蛋白活性则明显抑制缺氧诱导的HUVECs衰老,SRF蛋白的核转位活化参与了Rac1蛋白调控HUVECs衰老的发生.  相似文献   

9.
探讨了磷脂酶Dα1(PLDα1)在ABA抑制拟南芥主根伸长过程中的作用。PLOα1基因突变体pldα1主根伸长受ABA抑制小于野生型(WT);根系PLDα1活性在ABA处理下升高;拟南芥根细胞原生质体中活性氧(ROS)含量在ABA处理下升高,但是pldα1升高小于WT;根系NADPH氧化酶活性在ABA处理下升高,pldα1升高小于WT,外源加入10μmol/L^-1 PA(磷脂酸,PLD水解产物)后,前者活性显著升高;外源加入H2O2可诱导WT和pldα1主根伸长都受到抑制,且二者差异不明显。结果表明,PLDα1产生的PA通过激活NADPH氧化酶产生ROS介导ABA调控的拟南芥主根伸长过程。此外,初步探讨了PLDα1在拟南芥根毛尖端生长中的作用:pldα1突变体根毛长度小于WT,根毛尖端ROS和Ca^2+浓度低于WT。  相似文献   

10.
目的:研究黄芪甲苷(As-IV)对血管紧张素Ⅱ(AngⅡ)诱导大鼠肾小球系膜细胞(GMCs)增殖及炎症因子表达的影响。方法:采用10-6mol/L的AngⅡ刺激GMCs增殖,同时分别加入25,50,100 μmol/L的As-IV对GMCs作用48 h,运用MTT法检测各组细胞增殖状况;流式细胞术观察GMCs中细胞内活性氧(ROS)水平变化;ELISA法检测细胞上清液中单核细胞趋化蛋白-1(MCP-1)的含量;Western blot法检测细胞中转化生长因子β1(TGF-β1)蛋白的表达。结果:与AngⅡ刺激组相比,As-IV干预显著抑制GMCs细胞增殖,减少细胞内ROS水平,抑制MCP-1及TGF-β1的表达。结论:As-IV对于AngⅡ诱导GMCs的增殖具有抑制作用,且能降低相关炎症因子的表达。  相似文献   

11.
The small Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 have distinct roles in regulating neutrophil chemotaxis; however, little is known about their possible unique roles in mediating bacterial killing. To elucidate the relative roles of Rac1 and Rac2 in regulating neutrophil-mediated bacterial killing, we utilized the previously described mice model in which mouse neutrophils are deficient in either Rac1, Rac2, or both isoforms. We demonstrate here that while both Rac isoforms are required for normal neutrophil chemotaxis and bacterial killing, they have non-overlapping roles in bacterial phagocytosis and NADPH oxidase function.  相似文献   

12.
The highly homologous Rac1 and Rac2 GTPases are co-expressed in cells of haematopoietic origin and are likely to show some functional redundancy. While disruption of the Rac2 gene in mice has provided insight into some of its functions, Rac1 null mice are embryonic lethal and only recently has conditional gene disruption been possible. Consequently, two articles1,2 have recently elucidated some overlapping and unique key roles of Rac1 and Rac2 in haematopoietic processes including specialized roles in innate and humoral immunity.  相似文献   

13.
Rho family proteins are constitutively activated in the highly invasive human fibrosarcoma HT1080 cells. We now investigated the specific roles of Rac1 and Rac2 in regulating morphology, F-actin organization, adhesion, migration, and chemotaxis of HT1080 cells. Downregulation of Rac1 using specific siRNA probes resulted in cell rounding, markedly decreased spreading, adhesion, and chemotaxis of HT1080 cells. 2D migration on laminin-coated surfaces in contrast was not markedly affected. Selective Rac2 depletion did not affect cell morphology, cell adhesion, and 2D migration, but significantly reduced chemotaxis. Downregulation of both Rac1 and Rac2 resulted in an even more marked reduction, but not complete abolishment, of chemotaxis indicating distinct as well as overlapping roles of both proteins in chemotaxis. Rac1 thus is selectively required for HT1080 cell spreading and adhesion whereas Rac1 and Rac2 are both required for efficient chemotaxis.  相似文献   

14.
The hemopoietic-specific Rho family GTPase Rac2 shares 92% amino acid identity with ubiquitously expressed Rac1. Neutrophils from rac2(-/-) mice have multiple defects, including chemoattractant-stimulated NADPH oxidase activity and chemotaxis, which may result from an overall reduction in cellular Rac or mechanisms that discriminate Rac1 and Rac2. We show that murine neutrophils have similar amounts of Rac1 and Rac2, unlike human neutrophils, which express predominantly Rac2. An affinity precipitation assay for Rac-GTP showed that although FMLP-induced activation of both isoforms in wild-type neutrophils, approximately 4-fold more Rac2-GTP was detected than Rac1-GTP. Wild-type and Rac2-deficient neutrophils have similar levels of total Rac1. FMLP-induced Rac1-GTP in rac2(-/-) neutrophils was approximately 3-fold greater than in wild-type cells, which have similar levels of total Rac1, yet FMLP-stimulated F-actin, chemotaxis, and superoxide production are markedly impaired in rac2(-/-) neutrophils. Heterozygous rac2(+/-) neutrophils, which had intermediate levels of total and FMLP-induced activated Rac2, exhibited intermediate functional responses to FMLP, suggesting that Rac2 was rate limiting for these functions. Thus, phenotypic defects in FMLP-stimulated Rac2-deficient neutrophils appear to reflect distinct activation and signaling profiles of Rac1 and Rac2, rather than a reduction in the total cellular level of Rac.  相似文献   

15.
Actin assembly at the leading edge of migrating cells depends on the availability of high-affinity free barbed ends (FBE) that drive actin filament elongation and subsequent membrane protrusion. We investigated the specific mechanisms through which the Rac1 and Rac2 small guanosine triphosphatases (GTPases) generate free barbed ends in neutrophils. Using neutrophils lacking either Rac1 or Rac2 and a neutrophil permeabilization model that maintains receptor signaling to the actin cytoskeleton, we assessed the mechanisms through which these two small GTPases mediate FBE generation downstream of the formyl-methionyl-leucyl-phenylalanine receptor. We demonstrate here that uncapping of existing barbed ends is mediated through Rac1, whereas cofilin- and ARP2/3-mediated FBE generation are regulated through Rac2. This unique combination of experimental tools has allowed us to identify the relative roles of uncapping (15%), cofilin severing (10%), and ARP2/3 de novo nucleation (75%) in FBE generation and the respective roles played by Rac1 and Rac2 in mediating actin dynamics.  相似文献   

16.
The Rho/Rac family is a group o fRas-related proteins with demonstrated roles in the regulation of proliferation and cytoskeletal structures in a number of cell lineages. Despite this, the actual role of these proteins in T-cells could not be addressed in vivo due to the lack of adequate animal models. Recently, the use of knockout and transgenic animals for Rac1, Rac2, and RhoA has provided a genetic proof of the importance of Rho/Rac protein in different aspects of T-cell signaling. These animals have also allowed us to get better views about the influence of these GTPases proteins on the maturation decisions of immature lymphocytes and on the signaling strategies these GTPases utilize to favor the generation of coherent and robust immune responses.  相似文献   

17.
The small G proteins Cdc42, Rac1, and Rac2 regulate the rearrangements of actin and membrane necessary for Fcgamma receptor-mediated phagocytosis by macrophages. Activated, GTP-bound Cdc42, Rac1, and Rac2 bind to the p21-binding domain (PBD) of PAK1, and this interaction provided a basis for microscopic methods to localize activation of these G proteins inside cells. Fluorescence resonance energy transfer-based stoichiometry of fluorescent chimeras of actin, PBD, Cdc42, Rac1, and Rac2 was used to quantify G protein activation relative to actin movements during phagocytosis of IgG-opsonized erythrocytes. The activation dynamics of endogenous G proteins, localized using yellow fluorescent protein-labeled PBD, was restricted to phagocytic cups, with a prominent spike of activation over an actin-poor region at the base of the cup. Refinements of fluorescence resonance energy transfer stoichiometry allowed calculation of the fractions of activated GTPases in forming phagosomes. Cdc42 activation was restricted to the leading margin of the cell, whereas Rac1 was active throughout the phagocytic cup. During phagosome closure, activation of Rac1 and Rac2 increased uniformly and transiently in the actin-poor region of phagosomal membrane. These distinct roles for Cdc42, Rac1, and Rac2 in the component activities of phagocytosis indicate mechanisms by which their differential regulation coordinates rearrangements of actin and membranes.  相似文献   

18.
Opportunistic infections, common in HIV-1-infected patients, increase HIV replication; however, the intracellular signaling mechanisms involved are not clearly known. We have shown that Toll-like receptor 2 (TLR2), TLR4, and TLR9 mediate microbial Ag-induced HIV-long terminal repeat (HIV-LTR) trans-activation and HIV-1 replication, and that LPS-induced HIV-LTR trans-activation is mediated through myeloid differentiation adapter protein. Recently, Toll-IL-1R domain-containing adapter protein (TIRAP) has been identified as an adapter molecule that mediates responses to TLR2 and TLR4 ligands, and TIRAP was suggested to provide signaling specificity for different TLRs. Rac1, a small GTP-binding protein that is activated upon LPS stimulation of macrophages, activates phosphatidylinositol 3-kinase and Akt and leads to NF-kappaB activation. The roles of Rac1 and TIRAP in LPS activation of HIV replication is not known. In the present study we show that LPS stimulation of human microvessel endothelial cells leads to Rac1 activation. Constitutively active Rac1 (Rac1V12) simulated the effect of LPS to activate HIV-LTR, whereas the expression of dominant negative Rac1 (Rac1N17) partially blocked LPS-induced HIV-LTR trans-activation. Rac1V12-induced HIV-LTR activation was independent of myeloid differentiation adapter protein, and dominant negative TIRAP blocked Rac1V12-induced HIV-LTR trans-activation. In this study we show for the first time that activation of Rac1 leads to HIV-LTR trans-activation, and this is mediated through TIRAP. Together these results underscore the importance of Rac1 and TIRAP in TLR4 activation of HIV replication and help delineate the signaling pathways induced by TLRs to mediate microbial Ag-induced HIV replication and HIV pathogenesis.  相似文献   

19.
Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation.  相似文献   

20.
Rac signaling in breast cancer: a tale of GEFs and GAPs   总被引:1,自引:0,他引:1  
Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gβγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号