首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
不同土地利用方式对潮棕壤有机碳含量的影响   总被引:8,自引:1,他引:7  
对潮棕壤不同土地利用方式下0~100 cm土体中土壤有机碳含量的剖面分布、有机碳储量及C/N进行了研究.结果表明:不同土地利用方式下土壤有机碳含量的剖面分布差异明显,林地、割草地、荒地及裸地各土层有机碳含量高于农田生态系统;不同土地利用方式下的土壤有机碳与全氮呈极显著的正相关;土壤C/N随剖面土层深度的增加呈下降趋势,林地土壤的C/N相对较高,割草地、荒地和裸地次之,农田生态系统的土壤C/N较低.在0~100cm深度土壤,荒地每年截获的土壤有机碳分别比农田不施肥、农田循环猪圈肥处理、农田化肥NPK处理、农田化肥NPK 循环猪圈肥处理高4.52、4.25、4.46和3.58 t.hm-2.说明荒地在增加土壤有机碳储量方面有很大潜力.  相似文献   

2.
茶园土壤微生物群落基因多样性   总被引:10,自引:0,他引:10  
应用PCR技术,直接从土壤中抽提总DNA,扩增16S rDNA V3 片段,采用变性梯度凝胶电泳(DGGE)分析16S rDNA V3 片段的多态性,研究了杭州西湖梅家坞不同植茶年龄(8、50和90年)、不同利用方式(茶园、荒地和林地)的土壤微生物群落基因多样性.结果表明:不同植茶年龄和不同土地利用方式影响土壤微生物群落的基因多样性.荒地、茶园和林地土壤微生物群落基因多样性指数明显不同(P<0.05),其排列顺序为荒地>茶园>林地.不同植茶年龄的土壤中,50年茶园土壤的微生物群落基因多样性指数、微生物量碳和基础呼吸明显高于8年和90年茶园土壤(P<0.05).  相似文献   

3.
广东省不同土地利用方式对土壤微生物量碳氮的影响   总被引:16,自引:0,他引:16  
通过野外调查与室内分析,研究了广东省韶关红壤、广州赤红壤、雷州砖红壤3个地区4种不同土地利用方式(林地、果园、草地和农田)表层土壤(0~20cm)微生物量C、N特征.研究结果表明:不同土壤类型和不同土地利用方式对土壤微生物量C、N均有一定影响,其中土地利用方式影响更为明显.不同土地利用方式下土壤微生物量C、N差异显著,均表现为果园和林地高于农田和草地.土壤有机C、全N同样以果园较高.而对微生物商分析结果表明,不同的土地利用方式对土壤有机C总量和微生物生物量C的影响程度并不一致.相关分析表明,土壤微生物量C、N与全N、有机C、速效N显著正相关;土壤微生物量C、N之间显著相关,证实土壤微生物量C、N是可以表征土壤肥力的敏感因子.  相似文献   

4.
土地利用方式对黑土剖面有机碳分布及碳储量的影响   总被引:6,自引:0,他引:6  
以典型黑土区29年长期定位试验处理下的土壤为对象,研究了农田、裸地、自然草地和落叶松林地4种土地利用方式下土壤剖面(0~200 cm)有机碳及碳储量的分布特征.结果表明:不同土地利用方式下表层(0~10 cm)土壤有机碳含量差异最大,表现为草地>农田>林地>裸地.农田10~120 cm各土层有机碳含量均低于草地、林地和裸地.与农田相比,自然草地对土壤有机碳提升作用明显,其0~60 cm各层土壤有机碳含量均显著高于农田;裸地表层(0~10 cm)土壤有机碳含量显著低于农田;落叶松林地0~20 cm有机碳含量与农田相比无明显变化,但其20~140 cm土层有机碳含量均高于农田.土壤剖面有机碳含量与p H值、容重、粉粒和粘粒含量呈显著负相关,与全氮和砂粒含量呈显著正相关.农田0~200 cm剖面有机碳储量显著低于其他3种利用方式,分别比草地、裸地和林地低13.6%、11.4%和10.9%.农田黑土在增加碳储量及改善环境方面具有很大潜力.  相似文献   

5.
长期不同施肥制度对潮棕壤肥力及微生物活性的影响   总被引:1,自引:0,他引:1  
利用长期定位试验研究了不同施肥制度对潮棕壤肥力及微生物活性的影响。结果表明:长期施用有机肥、无机肥显著降低土壤pH;长期施用化肥并不能增加土壤全碳、氮含量,而有机肥的长期施用却能显著提高土壤有机质含量;土壤长期无P、K肥料施入则会出现P、K的亏损。有机肥处理(M,N+M和NPK+M)的微生物量均显著高于不施肥处理(CK),且这些处理间无显著差异;NPK处理与CK处理间无显著差异,而长期施用N肥显著降低土壤微生物量;均衡施肥处理(M,N+M,NPK和NPK+M)均能显著增强土壤微生物呼吸(P0.05),而单施N处理对土壤微生物呼吸无显著影响;与CK相比,施肥处理均能显著提高土壤氨化作用(P0.05),其中以NPK+M处理最高;除N处理外,其他施肥处理均显著提高土壤硝化作用(P0.05)。相关性分析显示,土壤微生物量碳、氮,微生物呼吸,氨化和硝化作用均与土壤全碳、全氮极显著相关(P0.01),均能够较好地反映土壤肥力变化情况;而土壤微生物活性与其他理化因子相关性不一致,表明它们对土壤理化因子变化的响应程度不同。  相似文献   

6.
长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响   总被引:36,自引:0,他引:36  
以小麦-玉米轮作长期肥料定位试验为平台,探讨不同养分管理对玉米生育期塿土微生物量碳、氮和酶活性动态变化的影响。试验包括6个处理,分别为不施肥(CK)、单施氮肥(N)、氮磷配合(NP)、氮磷钾配合(NPK)、NPK+秸秆(SNPK)以及有机肥+NPK(MNPK)。结果表明玉米生育期土壤微生物量碳、氮变化显著。不同施肥管理下土壤微生物量碳、氮的高低显著性分别为MNPK>SNPK、NP、NPK>N、CK。玉米生育期内土壤酶活性也变化显著,蔗糖酶、脲酶和纤维素酶在玉米抽雄期达到活性高峰,而磷酸酶在玉米拔节期出现活性高峰。不同施肥管理对土壤酶活性的影响总体表现为MNPK处理最高,其次为SNPK处理,再次为NPK和NP处理,N和CK处理最低。不同施肥处理间土壤微生物量碳、氮以及酶活性与土壤有机碳、全氮、速效磷水平密切相关。塿土长期施用氮磷或氮磷钾化肥可以提高土壤微生物量碳、氮以及酶活性。一季作物秸秆还田配合氮磷钾化肥与氮磷钾相比有提高土壤微生物量碳、氮以及酶活性的趋势。在等氮量下,有机肥配合化肥与其他施肥模式相比,均显著提升土壤化学肥力因素、微生物量碳氮和酶活性。因此,塿土上建议进行有机无机肥配合以提高土壤肥力,保持土壤生物健康。  相似文献   

7.
不同土地利用方式下不同粒径土壤有机碳含量的变化可以在一定程度上反映土壤碳的变化,对揭示土壤有机碳循环过程具有重要意义.本研究在长期水土流失监测的基础上,采用土壤颗粒分级的方法,以南方红壤丘陵区不同土地利用方式(荒地、松林、草地)坡地土壤为研究对象,探讨了不同土地利用方式对不同粒径土壤有机碳分布特征的影响及其与草本生物量的关系.结果表明:土地利用方式和坡位对不同粒径土壤有机碳含量的影响较明显,研究区不同粒径土壤有机碳含量均表现为草地>松林>荒地;不同粒径土壤有机碳所占比例主要取决于土地利用方式,与坡位关系不大;由颗粒有机碳/矿物结合态有机碳(POC/MOC)值可知,草地土壤有机碳较易矿化,而荒地和松林土壤有机碳较稳定;红壤丘陵区坡地土壤砂粒有机碳对草本生物量的影响较大.  相似文献   

8.
不同土地利用类型下土壤活性有机碳库的变化   总被引:18,自引:0,他引:18  
宇万太  马强  赵鑫  周桦  李建东 《生态学杂志》2007,26(12):2013-2016
分析了中国科学院沈阳生态试验站不同土地利用类型长期定位试验土壤0~40cm活性有机碳含量,结果表明:0~20cm土层内荒地土壤有机碳、易氧化碳、微生物生物量碳、溶解性有机碳和轻组有机碳含量高于割草地和裸地,而割草地颗粒有机碳含量略高于荒地;在20~40cm土层,割草地土壤有机碳、易氧化碳和颗粒有机碳含量较高,而荒地微生物量碳、溶解性有机碳和轻组有机碳含量较高。不同土地利用类型土壤活性有机碳含量均随着土层加深而递减。土壤微生物量碳、溶解性有机碳和轻组有机碳的分配比例为荒地>割草地>裸地,易氧化碳和颗粒有机碳的分配比例为割草地>荒地>裸地。土壤活性有机碳的分配比例随土层加深而下降,但溶解性有机碳的分配比例变化趋势相反。  相似文献   

9.
以广西平果县石漠化典型岩溶山地为研究区域,选择海拔接近的稀疏次生林地、灌丛、荒草地、裸地和农田等5种主要土地利用方式为研究对象,研究土壤微生物生物量及其活性的变异特征。结果表明:在不同土地利用方式下,随着植被的恢复,土壤养分含量不断提高,大小顺序表现为次生林>灌丛>农田>荒草地>裸地。土壤微生物量和呼吸强度变化显著(P<0.05),其中微生物量总体呈上升趋势,次生林和灌丛增幅较大,荒草地和裸地增幅较小;土壤基础呼吸强度除荒草地之外均显著增加,和土壤养分含量的变化趋势相一致。代谢熵(qCO2)变化规律不同,大小关系表现为:灌丛>农田>次生林>荒草地>裸地。不同土地利用方式下,由于相应地上、地下资源输入等环境因素的改变导致了土壤微生物量的差异性。为实现桂西南石漠化地区岩溶山地土壤生态系统的健康发展,从土壤生物学角度出发,积极推进植被生态恢复工程,尽可能减少人为活动对土地的干扰程度更有利于提高土壤质量。  相似文献   

10.
长期培肥黑土微生物量碳动态变化及影响因素   总被引:35,自引:3,他引:32  
以东北典型黑土区长期采用2种不同量有机肥(M2、M4)、化肥(NPK)和不施肥(CK)4种方式培肥土壤为研究对象,对生长季微生物量碳的动态变化进行研究.结果表明,施用有机肥,微生物量碳显著高于施用化肥和不施肥,容量在620mg·kg^-1以上.在各处理中。微生物量碳大小顺序为M4>M2>NPK≥CK.M2、M4微生物量碳最大峰值出现在抽雄吐丝期,NPK最大峰值出现在播种期,CK最大峰值出现在蜡熟期,季节性变化平稳.施肥数量和种类不同所引起的微生物量碳的差异,并未因季节变化及玉米生育时期影响而改变.微生物量碳的动态变化与绝大多数黑土生物、理化特性指标动态变化无显著相关性;与黑土生物、理化特性。植物氮、磷、钾及作物籽粒粗蛋白含量之间存在较好的正相关性.  相似文献   

11.
植物、土壤及土壤管理对土壤微生物群落结构的影响   总被引:26,自引:2,他引:24  
土壤微生物是土壤生态系统的重要组成部分,对土壤微生物群落结构多样性的研究是近年来土壤生态学研究的热点。本文综述了有关植物、土壤类型以及土壤管理措施对土壤微生物群落结构影响的最新研究结果,指出植物的作用因植物群落结构多样性、植物种类、同种植物不同的基因型,甚至同一植物不同根的区域而异;而土壤的作用与土壤质地和有机质含量等因素有关;植物和土壤类型在对土壤微生物群落结构影响上的作用存在互作关系。不同的土壤管理措施对土壤微生物群落结构影响较大,长期连作、大量的外援化学物质的应用降低了土壤微生物的多样性;而施用有机肥、免耕可以增加土壤微生物群落结构多样性,有利于维持土壤生态系统的功能。  相似文献   

12.
Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of short-term fluctuations of these three environmental factors on the relation between actual and observed root respiration rates. We designed an automated, open, gas-exchange system that allows continuous measurements on 12 chambers with intact roots in soil. By using three distinct chamber designs with each a different path for the air flow, we were able to measure root respiration over a 50-fold range of soil CO2 concentrations (400 to 25000 ppm) and to separate the effect of irrigation on observed vs. actual root respiration rate. All respiration measurements were made on one-year-old citrus seedlings in sterilized sandy soil with minimal organic material.Root respiration was strongly affected by diurnal fluctuations in temperature (Q10 = 2), which agrees well with the literature. In contrast to earlier findings for Douglas-fir (Qi et al., 1994), root respiration rates of citrus were not affected by soil CO2 concentrations (400 to 25000 ppm CO2; pH around 6). Soil CO2 was strongly affected by soil water content but not by respiration measurements, unless the air flow for root respiration measurements was directed through the soil. The latter method of measuring root respiration reduced soil CO2 concentration to that of incoming air. Irrigation caused a temporary reduction in CO2 diffusion, decreasing the observed respiration rates obtained by techniques that depended on diffusion. This apparent drop in respiration rate did not occur if the air flow was directed through the soil. Our dynamic data are used to indicate the optimal method of measuring root respiration in soil, in relation to the objectives and limitations of the experimental conditions.  相似文献   

13.
Warren  G. P.  Whitehead  D. C. 《Plant and Soil》1988,112(2):155-165
The available N of 27 soils from England and Wales was assessed from the amounts of N taken up over a 6-month period by perennial ryegrass grown in pots under uniform environmental conditions. Relationships between availability and the distribution of soil N amongst various fractions were then examined using multiple regression. The relationship: available soil N (mg kg–1 dry soil)=(Nmin×0.672)+(Ninc×0.840)+(Nmom×0.227)–5.12 was found to account for 91% of the variance in available soil N, where Nmin=mineral N, Ninc=N mineralized on incubation and Nmom=N in macro-organic matter. The N mineralized on incubation appeared to be derived largely from sources other than the macro-organic matter because these two fractions were poorly correlated. When availability was expressed in terms of available organic N as % of soil organic N (Nao) the closest relationship with other soil characteristics was: Nao=[Ninc×(1.395–0.0347×CNmom]+[Nmom×0.1416], where CNmom=CN ratio of the macro-organic matter. This relationship accounted for 81% of the variance in the availability of the soil organic N.The conclusion that the macro-organic matter may contribute substantially to the available N was confirmed by a subsidiary experiment in which the macro-organic fraction was separated from about 20 kg of a grassland soil. The uptake of N by ryegrass was then assessed on two subsamples of this soil, one without the macro-organic matter and the other with this fraction returned: uptake was appreciably increased by the macro-organic matter.  相似文献   

14.
Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this ‘priming'' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability.Substrate inputs can stimulate decomposition of native soil organic carbon (SOC; Kuzyakov et al., 2000), a phenomenon known as the ‘priming effect'' (Kuzyakov, 2010), and is considered large enough to influence ecosystem C balance (Wieder et al., 2013). Two functionally distinct groups of microorganisms are postulated to mediate priming: one that grows rapidly utilizing labile C, and one that grows slowly, breaking down recalcitrant SOC (Fontaine et al., 2003; Blagodatskaya et al., 2007). However, distinguishing these groups is technically challenging. Here, we used dual-stable isotope probing with 13C-glucose and 18O-water to identify bacteria in these two groups growing in response to single and repeated pulses of glucose. Organisms that utilize labile C for growth assimilate both 13C-glucose and 18O-water into their DNA, whereas organisms that grow using SOC incorporate only 18O-water. Differential isotope incorporation leads to a range of DNA densities separable through isopycnic centrifugation, which can then be characterized by sequencing (Radajewski et al., 2000).We sequenced fragments of bacterial 16S rRNA genes following single and repeated glucose pulses. We hypothesized that the single pulse of labile C would stimulate growth of opportunistic organisms, thus immobilizing nutrients and suppressing growth and diversity of the SOC-utilizing community, decreasing SOC decomposition (negative priming), a response analogous to that observed in plant communities in response to chronic N additions (Tilman, 1987; Clark and Tilman, 2008). We hypothesized that multiple glucose additions would stimulate growth of a more diverse bacterial community, including more native SOC-utilizing organisms that possess enzymes to decompose recalcitrant compounds, causing positive priming (Fontaine et al., 2003; Kuzyakov, 2010).Soil from a ponderosa pine ecosystem was amended weekly for 7 weeks with 500 μg C-glucose per gram soil (2.65 atom % 13C) in 100 μl deionized water or with 100 μl deionized water (n=5). Measurements of δ13C–CO2 and [CO2] enabled the partitioning of CO2 into that derived from added glucose or from native SOC (CSOC):where Ctotal is CO2–C from glucose-amended samples, δtotal is the δ13C–CO2 from glucose-amended samples, δglucose is the δ13C of the added glucose and δSOC is the δ13C–CO2 evolved from the non-amended samples. Priming was calculated as the difference between SOC oxidation of the amended and non-amended samples. With this approach, any evolved CO2 carrying the 13C signature of the added glucose is considered respiration of glucose, including 13C-labeled biomass and metabolites derived from prior glucose additions. Thus, this approach quantifies priming as the oxidation of SOC present at the beginning of the experiment, consistent with many other studies of priming (Cheng et al., 2003; De Graaff et al., 2010).In a parallel incubation for dual-stable isotope probing, the repeated-pulse samples received unlabeled glucose (500 μg C-glucose per gram soil) for 6 weeks while the non-amended and single-pulse samples received sterile deionized water. In week 7, samples received one of four isotope treatments (n=3): 97 atom % H2 18O (non-amended soil), 99 atom % 13C-glucose and 97 atom % H2 18O (single- and repeated-pulse soil), 12C-glucose and 97 atom % H2 18O (repeated-pulse soil) or 12C-glucose and H2 16O (repeated-pulse soil). After incubating for 7 days, soil was frozen at −40 °C. DNA was extracted, separated through isopycnic centrifugation, and two density ranges were sequenced for the bacterial 16S rRNA gene (Supplementary Figure 1): 1.731–1.746 g ml−1 (hereafter called the SOC-utilizing community) and 1.759–1.774 g ml−1 (hereafter called the glucose-utilizing community).Amplicons of the V3–V6 16S rRNA region were bar coded with broad-coverage fusion PCR primers and pooled before sequencing on a Genome Sequencer FLX instrument. These sequence data have been submitted to the GenBank database under accession number SRP043371. Data were checked for chimeras (Edgar et al., 2011), demultiplexed and quality checked (Caporaso et al., 2010). Taxonomy was assigned to genus at the ⩾80% bootstrap confidence level (Cole et al., 2009).We used the Shannon''s diversity index (H′), commonly used in microbial systems (Fierer and Jackson, 2006), to assess changes in microbial diversity. Analysis of variance was used to compare the amount of DNA within densities between isotope treatments (Supplementary Figure 2) and to test the effects of the treatments on the Shannon''s diversity (Figure 2) and Pielou''s evenness (Supplementary Figure 3) of the active bacterial communities, with post hoc Student''s t-tests, α=0.05. PRIMER 6 and PERMANOVA were used to create the nonmetric multidimensional scaling ordination and to compare bacterial communities between glucose treatments and the two sequenced density ranges.The single pulse of glucose suppressed SOC oxidation, whereas repeated pulses increased SOC oxidation (Figure 1). Few experiments to date have examined priming in response to repeated substrate amendments (Hamer and Marschner, 2005; Qiao et al., 2014), even though in nature soil receives repeated substrate pulses from litterfall and rhizodeposition. Our results demonstrate the dynamic response of SOC decomposition to repeated labile C inputs.Open in a separate windowFigure 1Weekly priming rates calculated as the difference in SOC respired between glucose-amended and non-amended soil (n=5).Dual-stable isotope probing was able to separate the growing bacteria into two groups with distinct DNA densities (P<0.001, PERMANOVA; Figure 3a), indicating differential uptake of 13C-glucose and 18O-water. In response to the initial glucose addition, the diversity of the growing glucose- and SOC-utilizing bacterial communities declined compared with the non-amended community (P<0.001, t-tests; Figure 2), driven by a strong decrease in evenness (Supplementary Figure 3). In the SOC-utilizing community, where DNA was labeled with 18O only, the relative abundance of Bacillus increased 4.9-fold compared with the non-amended control to constitute 31.6% of the community (Figure 3b). Bacillus survives well under low-nutrient conditions (Panikov, 1995), and is able to synthesize a suite of extracellular enzymes capable of degrading complex substrates (Priest, 1977), traits that are conducive for using SOC for growth. In the glucose-utilizing community, where DNA was labeled with both 13C and 18O, Arthrobacter increased 67.7-fold relative to the non-amended control to constitute 75.5% of the growing bacteria (Figure 3b). In culture experiments, Arthrobacter can rapidly take up and store glucose for later use (Panikov, 1995) and here we find it dominating the high-density DNA fractions, signifying that it is using the labeled glucose to grow. The increased biomass of Arthrobacter may have resulted in greater resource competition, thus reducing the diversity of the growing community, as is frequently found in plant communities (Bakelaar and Odum, 1978; Clark and Tilman, 2008).Open in a separate windowFigure 2Shannon''s diversity index (H′) of the non-amended, single-pulse, and repeated-pulse treatments (n=3) in the SOC- (mid-density) and glucose-utilizing (high-density) communities. Treatments with the same letter are not significantly different from each other (Student''s t, α=0.05).Open in a separate windowFigure 3(a) Nonmetric multidimensional scaling ordination showing differences in growing bacterial communities at the genus taxonomic level in the SOC-utilizing (mid-density; open symbols) and glucose-utilizing (high-density; closed symbols) groups of non-amended (Δ), single-pulse (○) and repeated-pulse (□) treatments (n=3). (b) Pie charts of genera in the SOC- and glucose-utilizing communities of the single- and repeated-pulse treatments (n=3). Genera with relative abundances >5% are listed in the figure legend.After repeated glucose amendments, the diversity of the growing community recovered to non-amendment levels (Figure 2) without strongly dominant organisms (Figure 3b and Supplementary Figure 3). The higher diversity found after repeated glucose pulses may be explained by trophic interactions where predators graze on prey populations that have been enlarged by resource addition, suppressing competition between prey species and causing secondary mobilization of nutrients (Clarholm, 1985). The decrease in total bacterial 16S rRNA gene copies in the repeated-pulse—compared with the single-pulse—treatment (Supplementary Figure 4) supports predation as a potential mechanism explaining the observed diversity increase after repeated glucose pulses.The recovery of diversity after repeated glucose pulses contrasts with resource competition theory (Tilman, 1987). When chronic additions of a limiting resource are applied, species diversity and evenness typically decrease (Bakelaar and Odum, 1978; Clark and Tilman, 2008) because competitive organisms become dominant. We observed this after the single glucose pulse, but not after repeated pulses. This diversity response may be the result of community shifts facilitated by short bacterial life cycles and the tens to hundreds of generations expected during the 7-week incubation (Behera and Wagner, 1974). In contrast, systems on which most ecological theory is based (for example, plants) might achieve perhaps 20 generations in a multi-decadal field experiment (Bakelaar and Odum, 1978; Clark and Tilman, 2008). With more generations, more community dynamics can occur, including increased resource cascades in which extracellular enzymes, metabolites or lysed cells of one functional group increase substrates for another (Blagodatskaya and Kuzyakov, 2008). Our results highlight the opportunity to test ecological theories in microbial ecosystems (Prosser et al., 2007), particularly as the short life cycles of microbes makes them well suited for pursuing ecological questions in an evolutionary framework (Jessup et al., 2004).The priming effect is ubiquitous, yet its drivers remain elusive. Our results suggest that changes in the diversity and composition of the growing bacterial community contribute to priming, and thus that ecosystem properties such as soil C storage may be sensitive to soil microbial biodiversity.  相似文献   

15.
生物质炭对水稻土团聚体微生物多样性的影响   总被引:9,自引:0,他引:9  
生物质炭施用对土壤微生物群落结构的影响已有报道,但土壤团聚体粒组中微生物群落对生物质炭施用的响应的研究还相对不足。以施用玉米秸秆生物质炭两年后的水稻土为对象,采用团聚体湿筛法,通过高通量测序对土壤团聚体的微生物群落结构与多样性进行分析,结果表明:(1)与对照相比,生物质炭施用显著促进了大团聚体(2000—250μm)的形成,并提高了团聚体的稳定性。(2)不同粒径团聚体间微生物相对丰度存在显著差异。在未施生物质炭的处理(C0)中,随着团聚体粒径增大,变形菌门、子囊菌门、β-变形杆菌目、格孢腔菌目的相对丰度逐渐降低,而酸杆菌门、担子菌门、粘球菌目、类球囊霉目的相对丰度逐渐升高。(3)生物质炭施用显著改变了团聚体间的微生物群落结构。与C0处理相比,生物质炭施用处理的大团聚体中变形菌门、鞭毛菌门和β-变形杆菌目的相对丰度分别显著提高了14.37%、33.28%和33.82%;微团聚体(250—53μm)中酸杆菌门、子囊菌门和粘球菌目的相对丰度分别显著降低了20.15%、19.93%和17.66%;粉、黏粒组分(53μm)中担子菌门的相对丰度升高90.25%,而子囊菌门和鞭毛菌门的相对丰度分别降低12.15%和12.58%。由此可见,生物质炭不仅改变土壤团聚体组成和分布,同时伴随着土壤微生物群落结构的改变。  相似文献   

16.
Summary Total porosity and pore-size distribution (p.s.d.) were determined in soil aggregates taken in plots planted with maize and treated with farmyard manure and three rates of compost. Soil aggregates were collected from the soil adherent to the maize roots (root soil aggregates) and from bulk soil (bulk soil aggregates). Mercury intrusion porosimetry was used to evaluate the total porosity and the p.s.d. Treatments did not affect the total porosity of the bulk soil aggregates. The same was observed for the root soil aggregates. However the total porosity of the root soil aggregates was always lower than that of the bulk soil aggregates. The loss of total porosity was found to be due to a decrease in the percentage of larger pores with respect to the total.  相似文献   

17.
18.
酸性硫酸盐土水改旱后土壤化学性状的变异初报   总被引:2,自引:1,他引:1  
探讨了酸性硫酸盐水稻土改为旱作后土壤化学性状的变异以及比较不同利用方式之间的经济效益.结果表明,酸性硫酸盐水稻土改种甜玉米和蔬菜后,土壤化学性状发生显著变化.耕层土壤酸度、水溶性硫酸根含量、土壤活性铝和活性铁含量均显著降低.经济效益得到显著提高.建议对水改旱后的环境效应进行深入研究以及进行定位观测,以便合理利用这一特殊的土壤资源  相似文献   

19.
耕作方式对潮土土壤团聚体微生物群落结构的影响   总被引:1,自引:0,他引:1  
为探究不同耕作方式对潮土土壤团聚体微生物群落结构和多样性的影响,采用磷脂脂肪酸(PLFA)法测定了土壤团聚体中微生物群落。试验设置4个耕作处理,分别为旋耕+秸秆还田(RT)、深耕+秸秆还田(DP)、深松+秸秆还田(SS)和免耕+秸秆还田(NT)。结果表明:与RT相比,DP处理显著提高了原状土壤和>5 mm粒级土壤团聚体中真菌PLFAs量和真菌/细菌,为真菌的繁殖提供了有利条件,有助于土壤有机质的贮存,提高了土壤生态系统的缓冲能力;提高了5~2 mm粒级土壤团聚体中细菌PLFAs量,降低了土壤革兰氏阳性菌/革兰氏阴性菌,改善了土壤营养状况;提高了<0.25 mm粒级土壤团聚体中微生物丰富度指数。总的来说,深耕+秸秆还田(DP)对土壤团聚体细菌和真菌生物量有一定的提高作用,并且在一定程度上改善了土壤团聚体微生物群落结构,有利于增加土壤固碳能力和保持土壤微生物多样性。冗余分析结果表明,土壤团聚体总PLFAs量、细菌、革兰氏阴性菌和放线菌PLFAs量与土壤有机碳相关性较强,革兰氏阳性菌PLFAs量与总氮相关性较强。各处理较大粒级土壤团聚体微生物群落主要受碳氮比、含水量、pH值和团聚体质量分数的影响,较小粒级土壤团聚体微生物群落则主要受土壤有机碳和总氮的影响。  相似文献   

20.
Carbon input to soil may decrease soil carbon content   总被引:21,自引:0,他引:21  
It is commonly predicted that the intensity of primary production and soil carbon (C) content are positively linked. Paradoxically, many long‐term field observations show that although plant litter is incorporated to soil in large quantities, soil C content does not necessarily increase. These results suggest that a negative relationship between C input and soil C conservation exists. Here, we demonstrate in controlled conditions that the supply of fresh C may accelerate the decomposition of soil C and induce a negative C balance. We show that soil C losses increase when soil microbes are nutrient limited. Results highlight the need for a better understanding of microbial mechanisms involved in the complex relationship between C input and soil C sequestration. We conclude that energy available to soil microbes and microbial competition are important determinants of soil C decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号