首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
叶根先  施利民  孙克萍  朱旭  冯江 《生态学报》2009,29(10):5330-5338
研究了同域分布的中华菊头蝠(Rhinolophus sinicus)与中菊头蝠(Rhinolophus affinis)的食性、形态、回声定位声波及捕食时间.中华菊头蝠与中菊头蝠均属于中等体型的菊头蝠,前臂长分别为(51.25±0.22) mm和(52.40±0.37) mm;悬挂状态下的回声定位声波均为典型的调频-恒频-调频(FM-CM-FM)型叫声,峰频分别为(82.07±0.17) kHz和(84.41±0.48) kHz.粪便分析显示中华菊头蝠与中菊头蝠分别捕食9目和7目昆虫,均以鳞翅目(Lepidiptera)和鞘翅目(Coleoptera)昆虫为主要食物(体积百分比总和> 90%),捕食鳞翅目昆虫的体积百分比差异显著,对猎物大小(以鞘翅目昆虫体长衡量)的选择无显著差异.中华菊头蝠与中菊头蝠的营养生态位宽度分别为2.38和2.28,重叠度达0.91,营养生态位未发生明显分化,但充足的食物资源促进了二者的共存.另外,2种菊头蝠的感官生态位和时间生态位未发生明显分化.由2种菊头蝠的翼载和峰频的差异推测二者发生了空间生态位和捕食微生境的分化,这也可能促进了二者的共存.  相似文献   

2.
本研究于 2 0 0 2年 5月初至 2 0 0 3年 9月中旬在北京房山区霞云岭四合村蝙蝠洞进行 ,分析了共栖同一山洞四种蝙蝠的形态特征、食性和回声定位信号。大足鼠耳蝠食谱中以宽鳍等三种鱼为主 (体积百分比为5 3% ) ,回声定位主频 4 1 87± 1 0 7kHz;马铁菊头蝠主要掠捕鳞翅目昆虫 (73% ) ,恒频叫声主频 74 70± 0 13kHz ;中华鼠耳蝠以近地面或在地表活动的鞘翅目昆虫步甲类和埋葬甲类为主要食物 (6 5 4 % ) ,声脉冲主频较低 35 73± 0 92kHz;白腹管鼻蝠捕食花萤总科和瓢虫科等鞘翅目昆虫 (90 % ) ,回声定位信号主频为 5 9 4 7±1 5 0kHz。结果证实同地共栖四种蝙蝠种属特异的回声定位叫声和形态结构的差异 ,以及不同的捕食生境和捕食策略 ,导致取食生态位分离是四种蝙蝠同地共栖的原因  相似文献   

3.
在自建网室(9 m×4 m×4 m)内驯养马铁菊头蝠(Rhinolophus ferrumequinum),利用超声波探测仪录制蝙蝠不同状态下回声定位声波,声波录制与红外摄像保持同步。结果表明,马铁菊头蝠回声定位声波为调频(FM)/恒频(CF)/调频(FM)型;在蝙蝠接近猎物过程中,声脉冲持续时间和间隔时间显著变短,下调FM(即tFM)组分变得愈为显著,捕捉猎物瞬间,产生捕食蜂鸣;飞行与悬挂状态相比,声脉冲重复率、主频率、声脉冲时间、声脉冲间隔和能率环的差异均达到显著水平。  相似文献   

4.
皮氏菊头蝠夏季的捕食行为对策   总被引:11,自引:1,他引:10  
利用蝙蝠超声波探测器和CoolEditor 2 0 0 0声波分析软件研究了皮氏菊头蝠 (Rhinolophuspearsoni)的超声波信号 ,同时在野外研究了其捕食行为。研究结果显示皮氏菊头蝠是FM/CF/FM型的食虫蝙蝠。其回声定位信号的CF声波两端均附有短暂的FM信号 ,每次声波脉冲包含 2段信号 ,第 1段信号的CF频率为 (6 1 0 8±0 0 19)kHz ,持续时间为 (4 6 85± 3 72 )ms ;第 2段信号的CF频率为 (6 0 97± 0 0 3)kHz ,持续时间为 (35 12± 2 6 7)ms。在对皮氏菊头蝠的捕食行为研究中 ,通过运用生物多样性指数分析和Spearman相关性分析 ,结果表明皮氏菊头蝠在常绿阔叶落叶混交林中主要以式捕食鳞翅目 (Lepidoptera)、鞘翅目 (Coleoptera)等中型个体的昆虫 ,对食物种类及其体型具有选择性。此外 ,其形态与回声定位功能之间还表现出相关性。  相似文献   

5.
2005年11月和2006年5、7、9月在贵州兴义研究了南蝠(Iaio)的食性。通过对南蝠粪便分析,发现7、9和11月份,鸟的残留羽毛在粪便中占很大比例,尤其是在11月份,鸟的羽毛占了食物组成的82%(体积百分比,下同),结果证实南蝠是一种食鸟蝙蝠。但在5月份的粪便中未发现鸟毛,而鞘翅目所占比例很大(85%);7和9月份,鸟的羽毛和鞘翅目残遗物所占的比例相当(7月份分别为44.6%和48.7%;9月份分别为51.1%和43.4%)。5、7、9、11月份南蝠取食鸟类的比例逐渐增加,而对鞘翅目的取食则逐渐减少。除取食鞘翅目外,南蝠还捕食鳞翅目、半翅目、直翅目和膜翅目等昆虫。对比捕食区内潜在的食物,发现南蝠对部分昆虫表现出明显的选择性,说明南蝠为选择性捕食者。  相似文献   

6.
2005年11月和2006年5、7、9月在贵州兴义研究了南蝠(Ia io)的食性。通过对南蝠粪便分析,发现7、9和11月份,鸟的残留羽毛在粪便中占很大比例,尤其是在11月份,鸟的羽毛占了食物组成的82%(体积百分比,下同),结果证实南蝠是一种食鸟蝙蝠。但在5月份的粪便中未发现鸟毛,而鞘翅目所占比例很大(85%);7和9月份,鸟的羽毛和鞘翅目残遗物所占的比例相当(7月份分别为44.6%和48.7%;9月份分别为51.1%和43.4%)。5、7、9、11月份南蝠取食鸟类的比例逐渐增加,而对鞘翅目的取食则逐渐减少。除取食鞘翅目外,南蝠还捕食鳞翅目、半翅目、直翅目和膜翅目等昆虫。对比捕食区内潜在的食物,发现南蝠对部分昆虫表现出明显的选择性,说明南蝠为选择性捕食者。  相似文献   

7.
河南省二种菊头蝠的核型研究   总被引:1,自引:0,他引:1  
取骨髓细胞采用空气干燥法对河南省二种菊头蝠的核型进行研究。结果:1.中菊头蝠染色体数为2n=62,N,F=60,属于Harada等划分的菊头蝠属的第1类群,即最原始的类群;2.马铁菊头蝠染色体数为2n=58.N.F=60,属于Harada等划分的菊头蝠属的第2类群;3.马铁菊头蝠的核型为国内首次报道。  相似文献   

8.
普通长翼蝠食性结构及其回声定位与体型特征   总被引:1,自引:0,他引:1  
Hu KL  Wei L  Zhu TT  Wang XZ  Zhang LB 《动物学研究》2011,32(2):163-167
在普通长翼蝠(Miniopterus fuliginosus)的捕食区内用灯诱法和网捕法调查潜在食物(昆虫)种类; 用粪便分析法鉴定普通长翼蝠的食物组成,发现其主要捕食体型较大的鳞翅目和鞘翅目昆虫,体积百分比分别为55%和38%.普通长翼蝠具有相对狭长的翼,翼展比为6.94 ± 0.13;翼载为(9.85 ± 0.83)N/m2,相对较大.飞行状态下普通长翼蝠的回声定位叫声为调频下扫型,声脉冲时程为(1.45 ± 0.06)ms,脉冲间隔为(63.08 ± 21.55)ms,主频较低,为(44.50 ± 2.26)kHz.研究表明,普通长翼蝠的形态特征和回声定位特征与其捕食行为有着密切的联系.  相似文献   

9.
依据部分线粒体16S rRNA基因序列,我们对贵州九种菊头蝠进行了分子系统进化关系研究.结果表明:马铁菊头蝠与其他菊头蝠亲缘关系较远,它可能是最原始的种类.中华菊头蝠和贵州菊头蝠聚在同一分支,表明它们之间亲缘关系非常接近,高鞍菊头蝠和贵州菊头蝠的DNA差异百分比最小(1.13%),因此认为这两个种亲缘关系也非常接近.  相似文献   

10.
三种共栖蝙蝠的回声定位信号特征及其夏季食性的比较   总被引:3,自引:2,他引:1  
2005年6至9月,对桂林市郊区两个山洞中高颅鼠耳蝠(Myotissiligorensis)、菲菊头蝠(Rhinolo-phuspusillus)和黑髯墓蝠(Taphozousmelanopogon)的回声定位叫声特征和食性进行分析,并结合其形态特征与野外观察,推断其捕食生境和捕食策略。研究结果发现:黑髯墓蝠体型最大,声音特征属短调频型多谐波,一般为4个谐波,能量主要集中在第二谐波上,主频率为(32·84±1·17)kHz,选择鞘翅目和双翅目昆虫为主要食物;高颅鼠耳蝠(长调频型)和菲菊头蝠(长恒频-调频型),体型都较小,主频率分别是(84·44±8·13)kHz和(110·78±1·65)kHz,以双翅目昆虫为主要食物;而菲菊头蝠则以鞘翅目和双翅目昆虫为主要食物。上述结果证明,高颅鼠耳蝠、菲菊头蝠和黑髯墓蝠在声音和食物组成等方面出现了明显分化。  相似文献   

11.
Does foraging mode mould morphology in lacertid lizards?   总被引:1,自引:0,他引:1  
Evolutionary changes in foraging style are often believed to require concurrent changes in a complex suite of morphological, physiological, behavioural and life-history traits. In lizards, species from families with a predominantly sit-and-wait foraging style tend to be more stocky and robust, with larger heads and mouths than species belonging to actively foraging families. Here, we test whether morphology and foraging behaviour show similar patterns of association within the family Lacertidae. We also examine the association of bite force abilities with morphology and foraging behaviour. Lacertid lizards exhibit considerable interspecific variation in foraging indices, and we found some evidence for a covariation between foraging style and body shape. However, the observed relationships are not always in line with the predictions. Also, the significance of the relationships varies with the evolutionary model used. Our results challenge the idea that foraging style is evolutionarily conservative and invariably associated with particular morphologies. It appears that the flexibility of foraging mode and its morphological correlates varies among lizard taxa.  相似文献   

12.
Robby Stoks  Frank Johansson 《Oikos》2000,91(3):559-567
Life history theory predicts that size and age at emergence depend on the slope and shape of the relationship between mortality rate and foraging effort. Given the high expected foraging effort in obligate univoltine species compared with semivoltine species we expected a low slope and an increase in foraging effort in the presence of a predator for the former and the opposite pattern for the latter. We tested these predictions in two damselfly species of the univoltine genus Lestes , and the semivoltine genus Coenagrion when confronted with perch. We determined for each of the four study species the relationships between mortality rate and foraging effort at an individual level. As expected by the different growth demands associated with differences in life cycle length, both Lestes species had a higher foraging effort than the two Coenagrion species in the absence as well as in the presence of perch. As a result, lestids also suffered a higher mortality rate. The slope of the regression between mortality rate and foraging effort was, as predicted, lower for lestids than for coenagrionids, for one species pair. Despite this, and opposite to our prediction, the lestids decreased foraging effort even more than coenagrionids in the presence of perch. We discuss these findings in the light of life history responses in species that differ in life cycle length.  相似文献   

13.
Bee foraging ranges and their relationship to body size   总被引:3,自引:0,他引:3  
Bees are the most important pollinator taxon; therefore, understanding the scale at which they forage has important ecological implications and conservation applications. The foraging ranges for most bee species are unknown. Foraging distance information is critical for understanding the scale at which bee populations respond to the landscape, assessing the role of bee pollinators in affecting plant population structure, planning conservation strategies for plants, and designing bee habitat refugia that maintain pollination function for wild and crop plants. We used data from 96 records of 62 bee species to determine whether body size predicts foraging distance. We regressed maximum and typical foraging distances on body size and found highly significant and explanatory nonlinear relationships. We used a second data set to: (1) compare observed reports of foraging distance to the distances predicted by our regression equations and (2) assess the biases inherent to the different techniques that have been used to assess foraging distance. The equations we present can be used to predict foraging distances for many bee species, based on a simple measurement of body size. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
One hundred and thirty-eight echolocation calls of 63 free-flying individuals of five bat species (Rhinolophus ferrumequinum,Myotis formosus,Myotis ikonnikovi,Myotis daubentoni and Murina leucogaster)were recorded (by ultrasonic bat detector (D980)) in Zhi'an village of Jilin Province,China.According to the frequency-time spectra,these calls were categorized into two types:FM/CF (constant frequency) / FM (R.ferrumequinum) and FM (frequency modulated)(M.formosus,M.ikonnikovi,M.daubentoni and M.leucogaster).Sonograms of the calls of R.ferrumequinum could easily be distinguished from those of the other four species.For the calls of the remaining four species,six echolocation call parameters,including starting frequency,ending frequency,peak frequency duration,longest inter-pulse interval and shortest inter-pulse interval,were examined by stepwise discriminant analysis.The results show that 84.1% of calls were correctly classified,which indicates that these parameters of echolocation calls play an important role in identifying bat species.These parameters can be used to test the accuracy of general predictions based on bats' morphology in the same forest and can provide essential information for assessing patterns of bat habitat use.  相似文献   

15.
There are seven species of Phylloscopus warblers breeding sympatrically in Central Siberia. In general they are very similar in morphology and behaviour. Slight differences in morphology, however, are often interpreted as having arisen through adaptation to distinct foraging ecologies, thereby mediating species coexistence. We studied the morphology and foraging behaviour of these warblers, taking into account phylogenetic relationships using Felsenstein's method of independent contrasts. Striking correlations were found between morphology and foraging techniques, as well as between morphology and microhabitat selection. Species with large hind limbs and short wings foraged in dense vegetation near the ground using gleaning techniques. In contrast, species with long wings and large bills favoured open vegetation, and foraged using sallying manoeuvres. Independently of these trends, small species foraged at higher levels in the vegetation, and used hoverflight more often than did larger species. Foraging methods were highly correlated with vegetation structure. Coniferous trees were exploited using hoverflight when they had short needles and gleaning when needles were long. Sallying predominated in light deciduous vegetation whereas gleaning was used most in dense, deciduous bushes. After controlling for the effects of vegetation structure on foraging behaviour, species differences became less pronounced, but were still significant. It is therefore concluded that morphology may be regarded as having adapted to enable more efficient exploitation of certain microhabitats. A preference for these microhabitats then further increases the observed behavioural differences between species. Morphology may therefore partly determine a species' ability to colonise new habitats.  相似文献   

16.
Spatial distribution of food resources is an important factor determining herbivore foraging. Previous studies have demonstrated that clumped distribution of preferred species increases its consumption by herbivores in single‐ or two‐species systems. However, the potential impact of distribution pattern of less preferred species on foraging was ignored. In natural grasslands with high species diversity and complexity, the spatial distribution of preferred species impacts on herbivore foraging may be strongly correlated with the distribution of less preferred species. Our aims were to determine the effect of distribution of both preferred and other plant species on herbivore foraging under conditions close to a native, multi‐species foraging environment, and conceptualize the relationships between spatial distribution of food resources and herbivore consumption. We hypothesized that random distribution of non‐preferred species reduces herbivore consumption of preferred species because the dispersion of less preferred species likely disturbs herbivore foraging. We conducted an experiment using three species with five combinations of clumped and random distribution patterns. Three species Lathyrus quinquenervius, Phragmites australis and Leymus chinensis, were of high, intermediate and low preferences by sheep, respectively. Results showed that distribution of low preferred species, but not that of high preferred one, affected the consumption of preferred species. Sheep obtained higher consumption of high preferred species when low preferred species followed a clumped distribution than a random distribution. Distance between aggregations of high and low preferred species did not affect sheep foraging. It was concluded that the effects of spatial distribution of preferred species on its consumption are dependent on herbivore foraging strategy, and sheep can consume more preferred species when there is a consistent spatial pattern between preferred species and the entire food resource, and that the random dispersion of low preferred species in grassland may reduce herbivore consumption of high preferred species, thus minimizing selective grazing.  相似文献   

17.
We studied territory placement and foraging behavior of breeding birds in relation to juxtaposition of forest vegetation and logged patches in southern Vermont, USA Different bird species used disturbed vegetation at differing spatial scales, depending on temtory size Four species Dendroica pensylvamca. Geothlypis trichas, Zonotrichia albicollis, Oporornis Philadelphia showed strong clumping of their small (< 0 5 ha) territories in logged patches and were absent or rare in undisturbed forest Eleven species (e g Seiurus aurocapillus, Vireo ohvaceus) tended to avoid logged areas, especially the centers of cut patches An additional 17 species fell between these two extremes, using a mixture of disturbed and undisturbed forest and showing no tendency to prefer one or the other These 17 species tended to have larger (1 to > 3 ha) territories than disturbance specialists We used ordination and quantitative matrix comparisons to describe and test relationships among 14 of the most common bird species according to their similarities in territory habitat structure, tree species composition, and foraging behavior These analyses did not reveal any strong associations between foraging behavior and use of cut versus uncut forest Habitat use by birds occupying this forest mosaic, with its strong local gradient of vegetation structure, was thus not associated with concurrent variation in foraging behavior The sizes of cut patches of forest (0 7-1 6 ha) in our study area may be close to the minimum required to attract distinct breeding assemblages of non-forest birds to otherwise undisturbed forest ecosystems Bird species that use patches of early-successional vegetation embedded m a forested landscape may adopt a fugitive strategy as they seek nesting habitats in the spring Careful use of forest management techniques may permit both forest-interior and early-successional bird species to coexist m the landscape  相似文献   

18.
Genetically based variation in coloration occurs in populations of many organisms belonging to various taxa, including birds, mammals, frogs, molluscs, insects and plants. Colour polymorphism has evolved in raptors more often than in any other group of birds, suggesting that predator–prey relationships was a driving evolutionary force. Individuals displaying a new invading colour morph may enjoy an initial foraging advantage because prey have difficulties in learning the colour of a rare morph (apostatic selection), or because morphs provide alternative foraging benefits allowing differently coloured individuals to exploit distinct food niches (disruptive selection). Plumage polymorphism should therefore have evolved in species that prey upon animals having the physiological ability to distinguish between differently coloured predators but also to flee once a predator has been detected. From this assumption, we can predict that closely related polymorphic and monomorphic species prey upon different animals. They may also differ in morphology, because foraging upon different prey may require different foraging modes, and in turn different morphological structures. We tested these two predictions in a comparative study of raptors. As expected, polymorphic and monomorphic species had a different diet, and there was a difference in wing length between polymorphic and monomorphic species within two genera ( Buteo and Accipiter ). Across all raptors for which phylogenetic relationships are known, polymorphic species preyed more often upon mammals than did monomorphic ones. These two types of raptor did not differ in the frequency of birds, insects and reptiles in their diets. We discuss these results in the light of the hypothesis that predator–prey relationships played a role in the evolution of colour polymorphism. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 565–578.  相似文献   

19.
Diet selection by mammalian herbivores is often influenced by plant community composition, and numerous studies have focused on the relationships between herbivore foraging decisions and food/plant species abundance. However, few have examined the role of neighbour palatability in affecting foraging of a target plant by large mammalian herbivores. We used a large-scale field dataset on diet selection by red deer Cervus elaphus in Fiordland National Park, New Zealand to: (1) estimate the palatability of native forest plant species to introduced deer from observed patterns of browse damage; and (2) examine whether intraspecific variation in browsing of plants can be related to variation in the local abundance of alternative forage species. Overall, 21 of the 53 forest species in our dataset were never browsed by deer. At a community level, plants were more likely to be browsed if they were in a patch of vegetation of high forage quality, containing high abundances of highly palatable species and/or low abundances of less-palatable species. Our findings suggest that deer make foraging decisions at both a coarse-grain level, selecting vegetation patches within a landscape based on the overall patch quality, and at a fine-grain level by choosing among individual plants of different species.  相似文献   

20.
The reasons for variation in group size among animal species remain poorly understood. Using ‘Ashmole's halo’ hypothesis of food depletion around colonies, we predict that foraging range imposes a ceiling on the maximum colony size of seabird species. We tested this with a phylogenetic comparative study of 43 species of seabirds (28 262 colonies), and investigated the interspecific correlation between colony size and foraging ranges. Foraging range showed weak relationships with the low percentiles of colony size of species, but the strength of the association increased for larger percentiles, peaking at the maximum colony sizes. To model constraints on the functional relationship between the focal traits, we applied a quantile regression based on maximum colony size. This showed that foraging range imposes a constraint to species’ maximum colony sizes with a slope around 2. This second‐order relationship is expected from the equation of the area of a circle. Thus, our large dataset and innovative statistical approach shows that foraging range imposes a ceiling on seabird colony sizes, providing strong support to the hypothesis that food availability is an important regulator of seabird populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号