首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Cardiac fibrosis is involved in nearly all forms of heart diseases and is characterized by excessive deposition of extracellular matrix proteins by cardiac fibroblasts (CFs). We and others have reported the possibility of poly(ADP-ribose) polymerase 1 (PARP1), the founding subtype of the PARPs enzyme family, as a novel therapeutic target of heart diseases. The cardiac fibrotic induction of mammalian target of rapamycin (mTOR) is mainly due to collagen expression, Smad3- and p53/JNK-mediated apoptosis. However, the possible link between PARP1 and mTOR in the progression of cardiac fibrosis remains unclear. In this study, PARP1 protein expression, and the activity of mTOR and its three target substrates (p70 ribosomal S6 Kinase 1, eukaryotic initiation factor 4E­-binding protein 1, and UNC­51­like kinase 1) were augmented; meanwhile, the nicotinamide adenine dinucleotide (NAD) content was significantly reduced in the process of cardiac fibrosis in vivo and in vitro. Sprague-Dawley rats were intraperitoneally injected with 3-aminobenzamide (3AB) (20 mg/kg/d; a well-established PARP1 inhibitor) or rapamycin (Rapa; 1 mg/kg/d; used for mTOR inhibition) 7 days after abdominal aortic constriction (AAC) surgery for 6 weeks. Pretreatment of 3AB or Rapa both relieved AAC-caused cardiac fibrosis and heart dysfunction. Overexpression of PARP1 with adenovirus carrying PARP1 gene specifically transduced into the hearts via intramyocardial multipoint injection caused similar myocardial damage. In CFs, preincubation with PARP1 or mTOR inhibitors all blocked TGF-β1 induced cardiac fibrosis. PARP1 overexpression evoked cardiac fibrosis, which could be antagonized by mTOR inhibitors or NAD supplementation in CFs. These results provide novel and compelling evidence that PARP1 exacerbated cardiac fibrosis, which was partially attributed to NAD-dependent activation of mTOR.  相似文献   

2.
It is generally believed that a mechanical signal initiates a cascade of biological events leading to coordinated cardiac remodeling. 14-3-3 family members are dimeric phosphoserine-binding proteins that regulate signal transduction, apoptotic, and checkpoint control pathways. To evaluate the molecular mechanism underlying swimming stress-induced cardiac remodeling, we examined the role of 14-3-3 protein and MAPK pathway by pharmacological and genetic means using transgenic mice with cardiac-specific expression of dominant-negative (DN) mutants of 14-3-3 (DN 14-3-3/TG) and p38alpha/beta MAPK (DNp38alpha and DNp38beta) mice. p38 MAPK activation was earlier, more marked, and longer in the myocardium of the TG group compared with that of the nontransgenic (NTG) group after swimming stress, whereas JNK activation was detected on day 5 and decreased afterward. In contrast, ERK1/2 was not activated after swimming stress in either group. Cardiomyocyte apoptosis, cardiac hypertrophy, and fibrosis were greatly increased in the TG group compared with those in the NTG group. Moreover, we found a significant correlation between p38 MAPK activation and apoptosis in the TG group. Furthermore, DN 14-3-3 hearts showed enhanced atrial natriuretic peptide expression. In contrast, DNp38alpha and DNp38beta mice exhibited reduced mortality and increased resistance to cardiac remodeling after 28 days of swimming stress compared with TG and NTG mice. Besides, treatment with a p38 MAPK inhibitor, FR-167653, resulted in regression of cardiac hypertrophy and fibrosis and improvement in the survival rate in the TG group. These results indicate for the first time that 14-3-3 protein along with p38 MAPK plays a crucial role in left ventricular remodeling associated with swimming stress.  相似文献   

3.
The insulin-like growth factor 1 receptor (IGF-1R) signaling in cardiomyocytes is implicated in physiological hypertrophy and myocardial aging. Although fibroblasts account for a small amount of the heart, they are activated when the heart is damaged to promote cardiac remodeling. However, the role of IGF-1R signaling in cardiac fibroblasts is still unknown. In this study, we investigated the roles of IGF-1 signaling during agonist-induced cardiac fibrosis and evaluated the molecular mechanisms in cultured cardiac fibroblasts. Using an experimental model of cardiac fibrosis with angiotensin II/phenylephrine (AngII/PE) infusion, we found severe interstitial fibrosis in the AngII/PE infused myofibroblast-specific IGF-1R knockout mice compared to the wild-type mice. In contrast, low-dose IGF-1 infusion markedly attenuated AngII-induced cardiac fibrosis by inhibiting fibroblast proliferation and differentiation. Mechanistically, we demonstrated that IGF-1-attenuated AngII-induced cardiac fibrosis through the Akt pathway and through suppression of rho-associated coiled-coil containing kinases (ROCK)2-mediated α-smooth muscle actin (αSMA) expression. Our study highlights a novel function of the IGF-1/IGF-1R signaling in agonist-induced cardiac fibrosis. We propose that low-dose IGF-1 may be an efficacious therapeutic avenue against cardiac fibrosis.Subject terms: Heart failure, Heart failure  相似文献   

4.
The serine-threonine kinase, Akt, inhibits cardiomyocyte apoptosis acutely both in vitro and in vivo. However, the effects of chronic Akt activation in the heart are unknown. To address this issue, we generated transgenic mice (TG+) with cardiac-specific expression of a constitutively active mutant of Akt (myr-Akt) driven by the myosin heavy chain-alpha promoter. Three TG+ founders (9-19 weeks) died suddenly with massive cardiac dilatation. Two viable TG+ lines (TG564 and TG20) derived from independent founders demonstrated cardiac-specific transgene expression as well as activation of Akt and p70S6 kinase. TG564 (n = 19) showed cardiac hypertrophy with a heart/body weight ratio 2.3-fold greater than littermates (n = 17, p < 0.005). TG20 (n = 18) had less marked cardiac hypertrophy with a heart/body weight ratio 1.6-fold greater than littermates (n = 17, p < 0.005). Isolated TG564 myocytes were also hypertrophic with surface areas 1.7-fold greater than littermates (p < 0.000001). Echocardiograms in both lines demonstrated concentric hypertrophy and preserved systolic function. After ischemia-reperfusion, TG+ had a 50% reduction in infarct size versus TG- (17 +/- 3% versus 34 +/- 4%, p < 0.001). Thus, chronic Akt activation is sufficient to cause a spectrum of phenotypes from moderate cardiac hypertrophy with preserved systolic function and cardioprotection to massive cardiac dilatation and sudden death.  相似文献   

5.
目的HB-EGF过表达可促进心肌纤维化及心肌细胞凋亡,本文研究人参皂甙Rb1对cTnT^R141W转基因扩张型心肌病小鼠发病过程中的HB-EGF表达和心肌纤维化的影响。方法将cTnT^R141W转基因小鼠随机分为模型组和人参皂甙Rb1组(70 mg/kg/d),连续给药7个月,取野生型小鼠作为对照组。用Kaplan-Meier法进行生存分析。心脏超声检测心功能及心脏几何构型。计算心重指数。光镜观察心肌细胞及间质变化。Western blot检测心脏HB-EGF,pSTAT3表达水平。结果Rb1长期给药能显著改善该模型的心功能和心脏几何构型,将死亡率降低50%。Rb1治疗组心重指数降低11.3%(P〈0.05),光镜观察显示Rb1能减轻心肌细胞排列紊乱以及间质纤维化。Western blot结果显示Rb1能够显著降低模型中的HB-EGF及pSTAT3的表达。结论Rb1抑制心肌病发生中的HB-EGF表达及抑制下游信号pSTAT的激活,并改善扩张型心肌病模型的心功能及心脏重构。  相似文献   

6.
7.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is known to induce cell growth in various cell types via transactivation of epidermal growth factor receptor (EGFR). To investigate the involvement of HB-EGF and EGFR in cardiac remodeling after myocardial infarction (MI), we examined the expressions of mRNA and protein in rat hearts 6 weeks after MI-induction. Where increased expressions of HB-EGF mRNA and protein were observed, infarcted myocardium was replaced by extracellular matrix and interstitial fibroblasts. EGFR mRNA and protein expression did not show significant changes in sham-operated heart tissues, non-infarcted region, and infarcted region. In vitro study demonstrated that HB-EGF mRNA was expressed mainly in cultured fibroblasts rather than in myocytes. We suggest that the interaction between HB-EGF and EGFR transactivation is closely related to the proliferation of cardiac fibroblasts and cardiac remodeling after MI in an autocrine, paracrine, and juxtacrine manner.  相似文献   

8.
Previous studies have implicated the attractive and promising role of miR‐590‐3p to restore the cardiac function following myocardial infarction (MI). However, the molecular mechanisms for how miR‐590‐3p involves in cardiac fibrosis remain largely unexplored. Using human cardiac fibroblasts (HCFs) as the cellular model, luciferase report assay, mutation, EdU assay and transwell migration assay were applied to investigate the biological effects of miR‐590‐3p on the proliferation, differentiation, migration and collagen synthesis of cardiac fibroblasts. We found that miR‐590‐3p significantly suppressed cell proliferation and migration of HCFs. The mRNA and protein expression levels of α‐SMA, Col1A1 and Col3A were significantly decreased by miR‐590‐3p. Moreover, miR‐590‐3p directly targeted at the 3’UTR of ZEB1 to repress the translation of ZEB1. Interfering with the expression of ZEB1 significantly decreased the cell proliferation, migration activity, mRNA and protein expressions of α‐SMA, Col1A1 and Col3A. Furthermore, the expressions of miR‐590‐3p and ZEB1 were identified in infarct area of MI model in pigs. Collectively, miR‐590‐3p suppresses the cell proliferation, differentiation, migration and collagen synthesis of cardiac fibroblasts by targeting ZEB1. These works will provide useful biological information for future studies on potential roles of miR‐590‐3p as the therapeutic target to recover cardiac function following MI.  相似文献   

9.
In addition to cardiac myocyte hypertrophy, proliferation and increased extracellular matrix production of cardiac fibroblasts occur in response to cardiac overload. This remodeling of the cardiac interstitium is a major determinant of pathologic hypertrophy leading to ventricular dysfunction and heart failure. Atrial and brain natriuretic peptides (ANP and BNP) are cardiac hormones produced primarily by the atrium and ventricle, respectively. Plasma ANP and BNP concentrations are elevated in patients with hypertension, cardiac hypertrophy, and acute myocardial infarction, suggesting their pathophysiologic roles in these disorders. ANP and BNP exhibit diuretic, natriuretic, and vasodilatory activities via a guanylyl cyclase-coupled natriuretic peptide receptor subtype (guanylyl cyclase-A or GC-A). Here we report the generation of mice with targeted disruption of BNP (BNP-/- mice). We observed focal fibrotic lesions in ventricles from BNP-/- mice with a remarkable increase in ventricular mRNA expression of ANP, angiotensin converting enzyme (ACE), transforming growth factor (TGF)-beta3, and pro-alpha1(I) collagen [Col alpha1(I)], which are implicated in the generation and progression of ventricular fibrosis. Electron microscopic examination revealed supercontraction of sarcomeres and disorganized myofibrils in some ventricular myocytes from BNP-/- mice. No signs of cardiac hypertrophy and systemic hypertension were noted in BNP-/- mice. In response to acute cardiac pressure overload induced by aortic constriction, massive fibrotic lesions were found in all the BNP-/- mice examined, accompanied by further increase of mRNA expression of TGF-beta3 and Col alpha1(I). We postulate that BNP acts as a cardiocyte-derived antifibrotic factor in the ventricle.  相似文献   

10.
Ma F  Li Y  Jia L  Han Y  Cheng J  Li H  Qi Y  Du J 《PloS one》2012,7(5):e35144
Interleukin-6 (IL-6) is an important cytokine participating in multiple biologic activities in immune regulation and inflammation. IL-6 has been associated with cardiovascular remodeling. However, the mechanism of IL-6 in hypertensive cardiac fibrosis is still unclear. Angiotensin II (Ang II) infusion in mice increased IL-6 expression in the heart. IL-6 knockout (IL-6-/-) reduced Ang II-induced cardiac fibrosis: 1) Masson trichrome staining showed that Ang II infusion significantly increased fibrotic areas of the wild-type mouse heart, which was greatly suppressed in IL-6-/- mice and 2) immunohistochemistry staining showed decreased expression of α-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1) and collagen I in IL-6-/- mouse heart. The baseline mRNA expression of IL-6 in cardiac fibroblasts was low and was absent in cardiomyocytes or macrophages; however, co-culture of cardiac fibroblasts with macrophages significantly increased IL-6 production and expression of α-SMA and collagen I in fibroblasts. Moreover, TGF-β1 expression and phosphorylation of TGF-β downstream signal Smad3 was stimulated by co-culture of macrophages with cardiac fibroblasts, while IL-6 neutralizing antibody decreased TGF-β1 expression and Smad3 phosphorylation in co-culture of macrophage and fibroblast. Taken together, our results indicate that macrophages stimulate cardiac fibroblasts to produce IL-6, which leads to TGF-β1 production and Smad3 phosphorylation in cardiac fibroblasts and thus stimulates cardiac fibrosis.  相似文献   

11.
Resistin-like alpha (Retnla) is a member of the resistin family and known to modulate fibrosis and inflammation. Here, we investigated the role of Retnla in the cardiac injury model. Myocardial infarction (MI) was induced in wild type (WT), Retnla knockout (KO), and Retnla transgenic (TG) mice. Cardiac function was assessed by echocardiography and was significantly preserved in the KO mice, while worsened in the TG group. Angiogenesis was substantially increased in the KO mice, and cardiomyocyte apoptosis was markedly suppressed in the KO mice. By Retnla treatment, the expression of p21 and the ratio of Bax to Bcl2 were increased in cardiomyocytes, while decreased in cardiac fibroblasts. Interestingly, the numbers of cardiac macrophages and unsorted bone marrow cells (UBCs) were higher in the KO mice than in the WT mice. Besides, phosphorylated histone H3(+) cells were more frequent in bone marrow of KO mice. Moreover, adiponectin in UBCs was notably higher in the KO mice compared with WT mice. In an adoptive transfer study, UBCs were isolated from KO mice to transplant to the WT infarcted heart. Cardiac function was better in the KO-UBCs transplanted group in the WT-UBCs transplanted group. Taken together, proliferative and adiponectin-rich bone marrow niche was associated with substantial cardiac recovery by suppression of cardiac apoptosis and proliferation of cardiac fibroblast.Subject terms: Apoptosis, Interleukins, Acute inflammation, Heart failure  相似文献   

12.
Cardiac fibrosis is a pathophysiological process characterized by excessive deposition of extracellular matrix. We developed a cardiac hypertrophy model using transverse aortic constriction (TAC) to uncover mechanisms relevant to excessive deposition of extracellular matrix in mouse myocardial cells. TAC caused upregulation of Tripartite motif protein 72 (TRIM72), a tripartite motif-containing protein that is critical for proliferation and migration. Importantly, in vivo silencing of TRIM72 reversed TAC-induced cardiac fibrosis, as indicated by markedly increased left ventricular systolic pressure and decreased left ventricular end-diastolic pressure. TRIM72 knockdown also attenuated deposition of fibrosis marker collagen type I and α-smooth muscle actin (α-SMA). In an in vitro study, TRIM72 was similarly upregulated in cardiac fibroblasts. Knockdown of TRIM72 markedly suppressed collagen type I and α-SMA expression and significantly decreased the proliferation and migration of cardiac fibroblasts. However, TRIM72 overexpression markedly increased collagen type I and α-SMA expression and increased the proliferation and migration of cardiac fibroblasts. Further study demonstrated that TRIM72 increased phosphorylated STAT3 in cardiac fibroblasts. TRIM72 knockdown in cardiac fibroblasts resulted in increased expression of Notch ligand Jagged-1 and its downstream gene and Notch-1 intracellular domain. Inhibition of Notch-1 abrogated sh-TRIM72-induced cardiac fibrosis. Together, our results support a novel role for TRIM72 in maintaining fibroblast-to-myofibroblast transition and suppressing fibroblast growth by regulating the STAT3/Notch-1 pathway.  相似文献   

13.
14.
To determine the significance of actin isoforms in chemomechanical coupling, we compared tension and ATPase rate in heart myofilaments from nontransgenic (NTG) and transgenic (TG) mice in which enteric gamma-actin replaced >95% of the cardiac alpha-actin. Enteric gamma-actin was expressed against three backgrounds: mice expressing cardiac alpha-actin, heterozygous null cardiac alpha-actin mice, and homozygous null cardiac alpha-actin mice. There were no differences in maximum Ca(2+) activated tension or maximum rate of tension redevelopment after a quick release and rapid restretch protocol between TG and NTG skinned fiber bundles. However, compared with NTG controls, Ca(2+) sensitivity of tension was significantly decreased and economy of tension development was significantly increased in myofilaments from all TG hearts. Shifts in myosin isoform population could not fully account for this increase in the economy of force production of TG myofilaments. Our results indicate that an exchange of cardiac alpha-actin with an actin isoform differing in only five amino acids has a significant impact on both Ca(2+) regulation of cardiac myofilaments and the cross-bridge cycling rate.  相似文献   

15.
PI3K/Akt signaling plays an important role in the regulation of cardiomyocyte death machinery, which can cause stress-induced cardiac dysfunction. Here, we report that apoptosis regulator through modulating IAP expression (ARIA), a recently identified transmembrane protein, regulates the cardiac PI3K/Akt signaling and thus modifies the progression of doxorubicin (DOX)-induced cardiomyopathy. ARIA is highly expressed in the mouse heart relative to other tissues, and it is also expressed in isolated rat cardiomyocytes. The stable expression of ARIA in H9c2 cardiac muscle cells increased the levels of membrane-associated PTEN and subsequently reduced the PI3K/Akt signaling and the downstream phosphorylation of Bad, a proapoptotic BH3-only protein. When challenged with DOX, ARIA-expressing H9c2 cells exhibited enhanced apoptosis, which was reversed by the siRNA-mediated silencing of Bad. ARIA-deficient mice exhibited normal heart morphology and function. However, DOX-induced cardiac dysfunction was significantly ameliorated in conjunction with reduced cardiomyocyte death and cardiac fibrosis in ARIA-deficient mice. Phosphorylation of Akt and Bad was substantially enhanced in the heart of ARIA-deficient mice even after treatment with DOX. Moreover, repressing the PI3K by cardiomyocyte-specific expression of dominant-negative PI3K (p110α) abolished the cardioprotective effects of ARIA deletion. Notably, targeted activation of ARIA in cardiomyocytes but not in endothelial cells reduced the cardiac PI3K/Akt signaling and exacerbated the DOX-induced cardiac dysfunction. These studies, therefore, revealed a previously undescribed mode of manipulating cardiac PI3K/Akt signaling by ARIA, thus identifying ARIA as an attractive new target for the prevention of stress-induced myocardial dysfunction.  相似文献   

16.
The mitogen-activated protein kinases (MAPK) have been the subject of many studies to identify signaling pathways that promote cell survival or death. In cultured cardiac myocytes, p38 MAPK promotes cell survival or death depending on whether it is activated by mitogen-activated protein kinase kinase 6 (MKK6) or MKK3, respectively. The objectives of the current study were to examine the effects of MKK6-mediated p38 activation in the heart in vivo. Accordingly, we generated transgenic (TG) mice that overexpress wild type MKK6 in a cardiac-restricted manner. Although p38 was about 17-fold more active in TG than non-transgenic (NTG) mouse hearts, TG mouse hearts were morphologically and functionally similar to those of NTG littermates. However, upon transient ischemia followed by reperfusion, the MKK6 TG mouse hearts exhibited significantly better functional recovery and less injury than NTG mouse hearts. Because MKK6 increases levels of the protective small heat shock protein, alpha B-crystallin (alpha BC), in cultured cardiac myocytes, we examined alpha BC levels in the mouse hearts. The level of alpha BC was 2-fold higher in MKK6 TG than NTG mouse hearts. Moreover, ischemia followed by reperfusion induced a 6.4-fold increase in alpha BC levels in the mitochondrial fractions of TG mouse hearts but no increase in alpha BC levels in any of the other fractions analyzed. These alterations in alpha BC expression and localization suggest possible mechanisms of cardioprotection in MKK6 TG mouse hearts.  相似文献   

17.
In previous studies, bradykinin (BK) has been shown to induce cell proliferation through BK B2 receptor (B2R) via p42/p44 MAPK in Statens Seruminstitut Rabbit Corneal Cells (SIRCs). In addition to this pathway, EGFR transactivation pathway has been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we further investigate whether these transactivation mechanisms participating in BK-induced cell proliferation in SIRCs. Using an immunofluorescence staining and RT-PCR, we initially characterize that SIRCs were corneal fibroblasts and predominantly expressed B2R by BK. Inhibition of p42/p44 MAPK by the inhibitors of Src, EGFR, and Akt or transfection with respective siRNAs prevents BK-induced DNA synthesis in SIRCs. The mechanisms underlying these responses were mediated through phosphorylation of Src and EGFR via the formation of Src/EGFR complex which was attenuated by PP1 and AG1478. Moreover, BK-induced p42/p44 MAPK and Akt activation was mediated through EGFR transactivation, which was diminished by the inhibitors of MMP-2/9 and heparin-binding EGF-like factor (HB-EGF). Finally, increased nuclear translocation of Akt and p42/p44 MAPK turns on early gene expression leading to cell proliferation. These results suggest that BK-induced cell proliferation is mediated through c-Src-dependent transactivation of EGFR via MMP2/9-dependent pro-HB-EGF shedding linking to activation of Akt and p42/p44 MAPK in corneal fibroblasts.  相似文献   

18.
The signature lesion of autoantibody-associated congenital heart block (CHB) is fibrosis of the conducting tissue. To date, participation of myofibroblasts in the cascade to injury has been unexplored. The importance of myofibroblast/macrophage cross-talk is demonstrated by the novel finding of these cell types in the heart of a neonate dying of CHB. This clue to pathogenesis prompted consideration of the mechanism by which maternal anti-SSA/Ro-SSB/La Abs initiate an inflammatory response and promote fibrosis. Isolated cardiocytes from 16-24 wk abortuses were rendered apoptotic by exposure to poly (2-) hydroxyethylmethacrylate; flow cytometry confirmed surface expression of Ro/La. Apoptotic cardiocytes were incubated with affinity-purified Abs to 52 and 60 kDa Ro from CHB mothers (opsonized) or IgG fractions from healthy donors (nonopsonized). Macrophages cultured with opsonized apoptotic cardiocytes expressed proinflammatory markers, supported by a three-fold increase in active alpha(V)beta(3) integrin. Fetal cardiac fibroblasts exposed to supernatants obtained from macrophages incubated with opsonized apoptotic cardiocytes (but not nonopsonized) dramatically increased expression of the myofibroblast marker alpha-smooth muscle actin (SMAc). The "opsonized" supernatant reversed an inhibitory effect of the "nonopsonized" supernatant on proliferation of fibroblasts (120 vs 69%, p < 0.05). Parallel experiments examined the effects of two cytokines and their neutralizing Abs on fibroblasts. TGFbeta1 increased SMAc staining but decreased proliferation. TNF-alpha did not affect either readout. Addition of anti-TGFbeta1 Abs to the "opsonized" supernatant blocked SMAc expression but increased proliferation, while anti-TNF-alpha blocking Abs had no effects. These data suggest that transdifferentiation of cardiac fibroblasts to a scarring phenotype is a pathologic process initiated by maternal Abs.  相似文献   

19.
Several studies have shown the role of microRNAs (miRNAs) in myocardial dysfunction in response to ischemia/reperfusion (I/R). In this study, we investigated the impact of high fat (HF) diet in the myocardial susceptibility to I/R injury, as well as in the expression of miRNA-29b. Isolated heart experiments using the ex vivo Langendorff perfusion model were used to induce cardiac I/R injury. HF diet-induced cardiac hypertrophy and impaired cardiac functional recovery after I/R. miRNA-29b, which targets Col1, was reduced in the heart of HF diet-fed mice, whereas the cardiac expression of Col1 was increased. In addition, hypoxia–reoxygenation (H/R) reduced the expression of miRNA-29b in cardiomyoblasts cultures. However, the overexpression of miRNA-29b in cardiomyoblasts reduced p53 mRNA levels and H/R injury, suggesting that downregulation of miRNA-29b may be involved in I/R injury. Together, our findings suggest that the reduced expression of miRNA-29b may be involved in the deteriorated cardiac functional recovery following I/R in obese mice.  相似文献   

20.
Hou N  Wang J  Li ZH  Cao Y  Fan KJ  Yang X 《遗传》2012,34(3):326-334
以往的miRNA芯片研究结果显示, miR-27b在人类心脏疾病标本和压力负荷引起的小鼠心肌肥厚模型中表达水平明显升高, 提示其在心脏疾病发生过程中发挥了重要功能。为研究miR-27b在心脏组织中的功能, 文章建立了在心肌细胞特异性 a-肌球蛋白重链(a-MHC)启动子(5.5 kb)控制下过表达miR-27b的转基因小鼠。通过Real-time PCR检测, 发现miR-27b前体和成熟体表达水平在转基因小鼠心脏组织中明显升高。miR-27b转基因小鼠不仅出现心肌肥厚, 还表现出明显的心肌纤维化。进一步研究表明心肌纤维化的关键调节分子金属基质蛋白酶13(MMP13)是miR-27b的靶分子, 在miR-27b转基因小鼠中MMP13显著下调, 胶原分子I和 III则显著上调。此外, 还发现miR-27b转基因小鼠会出现心脏超微结构的损伤。以上研究结果表明, miR-27b可能通过抑制MMP13促进心肌纤维化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号