首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asthma is a chronic lung disease characterized by local inflammation that can result in structural alterations termed airway remodeling. One component of airway remodeling involves fibroblast accumulation and activation, resulting in deposition of collagen I around small bronchi. Prostaglandin E(2) (PGE(2)) is the main eicosanoid lipid mediator produced by lung fibroblasts, and it exerts diverse anti-fibrotic actions. Dysregulation of the PGE(2) synthesis/response axis has been identified in human pulmonary fibrotic diseases and implicated in the pathogenesis of animal models of lung parenchymal fibrosis. Here we investigated the relationship between the fibroblast PGE(2) axis and airway fibrosis in an animal model of chronic allergic asthma. Airway fibrosis increased progressively as the number of airway challenges with antigen increased from 3 to 7 to 12. Compared with cells from control lungs, fibroblasts grown from the lungs of asthmatic animals, regardless of challenge number, exhibited no defect in the ability of PGE(2) or its analogs to inhibit cellular proliferation and collagen I expression. This correlated with intact expression of the EP(2) receptor, which is pivotal for PGE(2) responsiveness. However, cytokine-induced upregulation of PGE(2) biosynthesis as well as expression of cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 declined with increasing numbers of antigen challenges. In addition, treatment with the COX-2-selective inhibitor nimesulide potentiated the degree of airway fibrosis following repeated allergen challenge. Because endogenous COX-2-derived PGE(2) acts as a brake on airway fibrosis, the inability of fibroblasts to upregulate PGE(2) generation in the inflammatory milieu presented by repeated allergen exposure could contribute to the airway remodeling and fibrosis observed in chronic asthma.  相似文献   

2.
Abnormal growth of cardiac fibroblasts is critically involved in the pathophysiology of cardiac hypertrophy/remodeling. Hexarelin is a synthetic growth hormone secretagogue (GHS), which possesses a variety of cardiovascular protective activities mediated via the GHS receptor (GHSR), including improving cardiac dysfunction and remodeling. The cellular and molecular mechanisms underlying the effect of GHS on cardiac fibrosis are, however, not clear. In this report, cultured cardiac fibroblasts from 8-day-old rats were stimulated with ANG II or FCS to induce proliferation. The fibroblast proliferation and DNA and collagen synthesis were evaluated utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, (3)H-thymidine incorporation, and (3)H-proline incorporation. The level of mRNA of transforming growth factor (TGF)-beta was evaluated by RT-PCR, and the active TGF-beta1 release from cardiac fibroblasts was evaluated by ELISA. The level of cellular cAMP was measured by radioimmunoassay. In addition, the effects of 3,7-dimethyl-l-propargylxanthine (DMPX; a specific adenosine receptor A(2)R antagonist) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; a specific A(1)R antagonist) were tested. It was found that incubation with 10(-7) mol/l hexarelin for 24 h 1) inhibited the ANG II-induced proliferation and collagen synthesis and the 5% FCS- and TGF-beta-induced increase of DNA synthesis in cardiac fibroblast and 2) reduced ANG II-induced upregulation of TGF-beta mRNA expression and active TGF-beta1 release from fibroblasts. Hexarelin increased the cellular level of cAMP in cardiac fibroblasts. DMPX (10(-8) mol/l) but not DPCPX abolished the effect of hexarelin on cardiac fibroblast DNA synthesis. It is concluded that hexarelin inhibits DNA and collagen synthesis and proliferation of cardiac fibroblasts through activation of both GHSR and A(2)R and diminishment of ANG II-induced increase in TGF-beta expression and release.  相似文献   

3.
It is well established that transforming growth factor (TGF)-beta stimulates human lung fibroblasts (HLF) to differentiate into myofibroblasts. We characterized lysophosphatidic acid (LPA)-activated Cl- channel current (I(Cl-LPA)) in cultured human lung fibroblasts and myofibroblasts and investigated the influence of I(Cl-LPA) on fibroblast-to-myofibroblast differentiation. We recorded I(Cl-LPA) using the amphotericin perforated-patch technique. We activated I(Cl-LPA) using LPA or sphingosine-1-phosphate. We determined phenotype by Western blotting and immunohistochemistry using an anti-alpha-smooth muscle actin (SMA) antibody. RT-PCR was performed to determine which phospholipid growth factor receptors are present in HLF. We found that HLF cultured in TGF-beta (myofibroblasts) had significantly elevated alpha-SMA levels and I(Cl-LPA) current density compared with control fibroblasts. I(Cl-LPA) activation was blocked by DIDS, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), and the LPA receptor-specific antagonist dioctyl-glycerol pyrophosphate (1 microM). DIDS and NPPB, in a dose-dependent manner, significantly reduced alpha-SMA levels in HLF stimulated with TGF-beta. These results demonstrate the receptor-mediated activation of I(Cl-LPA) by LPA and sphingosine-1-phosphate in cultured human lung myofibroblasts, with only minimal I(Cl-LPA) activity in fibroblasts. This Cl- channel activity appears to play a critical role in the differentiation of human lung fibroblasts to myofibroblasts.  相似文献   

4.
We investigated the effects that the combination of IL-1 alpha and transforming growth factor-beta (TGF-beta) had on PGE2 production in a murine clonal osteoblastic cell line MC3T3-E1 and primary rat calvarial osteoblast-like cells. In serum-supplemented medium, IL-1 alpha was a potent stimulator of PGE2 production in MC3T3-E1 cells (50-fold increase with 0.1 ng/ml). TGF-beta (10 ng/ml) had only a small effect alone and no additional effect on IL-1 alpha-induced responses. In serum-deprived MC3T3-E1 cells, PGE2 responses to IL-1 alpha were either absent or markedly reduced. TGF-beta alone had small effects. However, simultaneous addition of TGF-beta with IL-1 alpha to MC3T3-E1 cells partially restored the ability of IL-1 alpha to generate a PGE2 response (10-fold increase in PGE2 with 0.1 ng/ml of both IL-1 alpha and TGF-beta). As with MC3T3-E1 cells, serum-deprived primary fetal rat calvarial osteoblastic cells also did not respond to IL-1 alpha, unless TGF-beta was present in the medium (sixfold increase in PGE2 with 0.1 ng/ml IL-1 alpha and 10 ng/ml TGF-beta). The synergistic effect of TGF-beta and IL-1 alpha was specific for PGE2 responses, because these factors did not synergistically affect cell proliferation, collagen and noncollagen protein synthesis, or alkaline phosphatase activity. The observed synergy was not associated with changes in the steady state cyclooxygenase (PGH synthase) mRNA levels. However, it did correlate with increased release of [3H]arachidonic acid from prelabeled serum-depleted MC3T3-E1 cells. Hence, the synergistic interactions of IL-1 alpha and TGF-beta on PGE2 appear to occur through an increase in the release of arachidonic acid substrate from phospholipid pools. These effects may be important for both normal bone turnover and the responses of bone to inflammatory and immune stimuli.  相似文献   

5.
To understand the role of tendon fibroblast contraction in tendon healing, we investigated the contraction of human patellar tendon fibroblasts (HPTFs) and its regulation by transforming growth factor-beta1 (TGF-beta1), TGF-beta3, and prostaglandin E(2) (PGE(2)). HPTFs were found to wrinkle the underlying thin silicone membranes, demonstrating that these tendon fibroblasts are contractile. Using fibroblast populated collagen gels (FPCGs), exogenous addition of TGF-beta1 or TGF-beta3 was found to increase fibroblast contraction compared to non-treated fibroblasts in serum-free medium, whereas PGE(2) was found to decrease the tendon fibroblast contraction. Moreover, the tendon fibroblasts in collagen gels treated with TGF-beta1 contracted to a greater degree than those treated with TGF-beta3. Since the extent of fibroblast contraction is related to scar tissue formation, this differential effect of TGF-beta1 and TGF-beta3 on HPTF contraction supports the previous finding that TGF-beta1 induces scar tissue formation, whereas TGF-beta3 reduces its formation. Further, the reduced tendon fibroblast contraction by PGE(2) suggests that excessive presence of this inflammatory mediator in the wound site might retard tendon healing. Taken together, the results of this study suggest that regulation of human tendon fibroblast contraction may reduce scar tissue formation and therefore improve the mechanical properties of healing tendons.  相似文献   

6.
7.
Connective tissue growth factor (CTGF) is overexpressed in a variety of fibrotic disorders, presumably secondary to the activation and production of transforming growth factor-beta (TGF-beta), a key inducer of fibroblast proliferation and matrix synthesis. The CTGF gene promoter has a TGF-beta response element that regulates its expression in fibroblasts but not epithelial cells or lymphocytes. Recent studies have shown that the macrophage-produced cytokine tumor necrosis factor alpha (TNFalpha) is necessary to promote inflammation and to induce genes, such as matrix metalloproteinases, involved with the early stages of wound healing. In this study, we examined the ability of TNFalpha to modulate CTGF gene expression. TNFalpha was found to suppress the TGF-beta-induced expression of CTGF protein in cultured normal fibroblasts. The activity of TNFalpha was blocked by NF-kappaB inhibitors. We showed that sequences between -244 and -166 of the CTGF promoter were necessary for both TGF-beta and TNFalpha to modulate CTGF expression. There was a constitutive expression of CTGF by scleroderma fibroblasts that was increased by TGF-beta treatment. Although TNFalpha was able to repress TGF-beta-induced CTGF and collagen synthesis both in normal and scleroderma skin fibroblasts, fibroblasts cultured from scleroderma patients were more resistant to TNFalpha as TNFalpha was unable to suppress the basal level of CTGF expression in scleroderma fibroblasts. Thus, we suspect that the high level of constitutive CTGF expression in scleroderma fibroblasts and its inability to respond to negative regulatory cytokines may contribute to the excessive scarring of skin and internal organs in patients with scleroderma.  相似文献   

8.
Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.  相似文献   

9.
Connective tissue growth factor (CTGF) is a cysteine-rich peptide synthesized and secreted by fibroblastic cells after activation with transforming growth factor beta (TGF-beta) that acts as a downstream mediator of TGF-beta-induced fibroblast proliferation. We performed in vitro and in vivo studies to determine whether CTGF is also essential for TGF-beta-induced fibroblast collagen synthesis. In vitro studies with normal rat kidney (NRK) fibroblasts demonstrated CTGF potently induces collagen synthesis and transfection with an antisense CTGF gene blocked TGF-beta stimulated collagen synthesis. Moreover, TGF-beta-induced collagen synthesis in both NRK and human foreskin fibroblasts was effectively blocked with specific anti-CTGF antibodies and by suppressing TGF-beta-induced CTGF gene expression by elevating intracellular cAMP levels with either membrane-permeable 8-Br-cAMP or an adenylyl cyclase activator, cholera toxin (CTX). cAMP also inhibited collagen synthesis induced by CTGF itself, in contrast to its previously reported lack of effect on CTGF-induced DNA synthesis. In animal assays, CTX injected intradermally in transgenic mice suppressed TGF-beta activation of a human CTGF promoter/lacZ reporter transgene. Both 8-Br-cAMP and CTX blocked TGF-beta-induced collagen deposition in a wound chamber model of fibrosis in rats. CTX also reduced dermal granulation tissue fibroblast population increases induced by TGF-beta in neonatal mice, but not increases induced by CTGF or TGF-beta combined with CTGF. Our data indicate that CTGF mediates TGF-beta-induced fibroblast collagen synthesis and that in vivo blockade of CTGF synthesis or action reduces TGF-beta-induced granulation tissue formation by inhibiting both collagen synthesis and fibroblast accumulation.  相似文献   

10.
Insulin-like growth factor I (IGF-I) and transforming growth factor-beta1 (TGF-beta1) are upregulated in myofibroblasts at sites of fibrosis in experimental enterocolitis and in Crohn's disease (CD). We compared the sites of expression of IGF-I and TGF-beta1 in a rat peptidoglycan-polysaccharide (PG-PS) model of chronic granulomatous enterocolitis and fibrosis. We used the human colonic CCD-18Co fibroblast/myofibroblast cell line to test the hypothesis that TGF-beta1 and IGF-I interact to regulate proliferation, collagen synthesis, and activated phenotype typified by expression of alpha-smooth muscle actin and organization into stress fibers. IGF-I potently stimulated while TGF-beta1 inhibited basal DNA synthesis. TGF-beta1 and IGF-I each had similar but not additive effects to induce type I collagen. TGF-beta1 but not IGF-I potently stimulated expression of alpha-smooth muscle actin and stress fiber formation. IGF-I in combination with TGF-beta1 attenuated stress fiber formation without reducing alpha-smooth muscle actin expression. Stress fibers were not a prerequisite for increased collagen synthesis. TGF-beta1 upregulated IGF-I mRNA, which led us to examine the effects of IGF-I in cells previously activated by TGF-beta1 pretreatment. IGF-I potently stimulated proliferation of TGF-beta1-activated myofibroblasts without reversing activated fibrogenic phenotype. We conclude that TGF-beta1 and IGF-I both stimulate type I collagen synthesis but have differential effects on activated phenotype and proliferation. We propose that during intestinal inflammation, regulation of activated phenotype and proliferation may require sequential actions of TGF-beta1 and IGF-I, but they may act in concert to increase collagen deposition.  相似文献   

11.
Although PGE(2) is a potent inhibitor of fibroblast function, PGE(2) levels are paradoxically elevated in murine lungs undergoing fibrotic responses. Pulmonary fibroblasts from untreated mice expressed all four E prostanoid (EP) receptors for PGE(2). However, following challenge with the fibrogenic agent, bleomycin, fibroblasts showed loss of EP2 expression. Lack of EP2 expression correlated with an inability of fibroblasts from bleomycin-treated mice to be inhibited by PGE(2) in assays of proliferation or collagen synthesis and blunted cAMP elevations in response to PGE(2). PGE(2) was similarly unable to suppress proliferation or collagen synthesis in fibroblasts from EP2(-/-) mice despite expression of the other EP receptors. EP2(-/-), but not EP1(-/-) or EP3(-/-) mice, showed exaggerated fibrotic responses to bleomycin administration in vivo as compared with wild-type controls. EP2 loss on fibroblasts was verified in a second model of pulmonary fibrosis using FITC. Our results for the first time link EP2 receptor loss on fibroblasts following fibrotic lung injury to altered suppression by PGE(2) and thus identify a novel fibrogenic mechanism.  相似文献   

12.
To elucidate mechanisms involved in the regulation of lung collagen content we studied hamsters with bleomycin-induced pulmonary fibrosis. Lung collagen in this model is increased as the result of greatly increased lung collagen synthesis rates. However, collagen synthesis rates are subsequently restored to normal. Hamster lung explants from both normal and bleomycin-exposed hamsters were cultured, and the effects of explant conditioned medium (CM) on lung fibroblast (IMR-90) proliferation and collagen production in vitro were determined. Lung explant CM increased fibroblast prostaglandin (PG)E2 production and intracellular cAMP, and decreased both fibroblast proliferation and collagen production in a dose-dependent manner. Greater activity was observed with lung explant CM from bleomycin-exposed lungs. Incubation of fibroblasts with indomethacin prior to addition of CM blocked CM-mediated changes in PGE2 and cAMP and inhibited changes in fibroblast proliferation and collagen production. Exogenous PGE2 or dibutyryl cAMP also suppressed fibroblast proliferation and collagen production. The suppressive activity in lung-conditioned medium is nondialyzable, has an apparent molecular weight of 15,000-20,000 by gel filtration, and is heat-stable. It is not species-restricted since CM from hamster lung affected human and hamster lung fibroblasts similarly. Activity is present preformed in lung and bronchoalveolar lavage fluid, although bronchoalveolar macrophages produce a nondialyzable factor in culture which suppresses fibroblast proliferation. The suppressive activity identified in fibrotic lung may represent a means for limiting collagen accumulation following tumor injury.  相似文献   

13.
Atrial natriuretic peptide, besides its role in the regulation of volume homeostasis, has been noted to exert cytoprotective effects in several cell types from hypoxia. The present study was performed to explore the effect of ANP on high glucose-activated transforming growth factor-beta1 (TGF-beta1), Smad and collagen synthesis in renal proximal epithelial cells. Cultured NRK-52E cells were divided into five groups: (1) normal glucose (5.5 mM), (2) high glucose (35 mM), (3) D-mannitol (29.5 mM), (4) high glucose plus ANP (10(-6)-10(-9) M), and (5) high glucose plus ANP (10(-6) M) and guanylate cyclase inhibitor LY83583 (10(-7) M) groups. Messenger RNA levels of TGF-beta1, Smad2, and collagens were measured by RT-PCR. ELISA, immunocytochemistry and Western blotting were used to detect protein levels of TGF-beta1, Smad2, phospho-Smad 2/3 and collagen type 1. We found high glucose to significantly increase mRNA levels of TGF-beta1, Smad 2, collagen types I and III and protein levels of TGF-beta1, phospho-Smad 2/3 and collagen type 1, but mannitol did not affect their expression. The addition of ANP significantly attenuated high glucose-enhanced mRNA and protein levels of TGF-beta1, Smad and collagens. LY83583 blocked the influence of ANP on high glucose-activated TGF-beta1, Smad and collagen synthesis. This is the first study to demonstrate that activation of TGF-beta1, Smad and collagen synthesis stimulated by high glucose can also be inhibited by exogenous ANP in renal tubular epithelial cells.  相似文献   

14.
Interleukin-1 (IL-1) is synthesized by and released from macrophages in response to a variety of stimuli and appears to play an essential role in virtually all inflammatory conditions. In tissues of mesenchymal origin (e.g., cartilage, muscle, bone, and soft connective tissue) IL-1 induces changes characteristic of both destructive as well as reparative phenomena. Previous studies with natural IL-1 of varying degrees of purity have suggested that it is capable of modulating a number of biological activities of fibroblasts. We have compared the effects of purified human recombinant (hr) IL-1 alpha and beta on several fibroblast functions. The parameters studied include cell proliferation, chemotaxis, and production of collagen, collagenase, tissue inhibitor of metalloproteinase (TIMP), and prostaglandin (PG) E2. We observed that hrIL-1s stimulate the synthesis and accumulation of type I procollagen chains. Intracellular degradation of collagen is not altered by the hrIL-1s. Both IL-1s were observed to increase the steady-state levels of pro alpha 1(I) and pro alpha 2(I) mRNAs, indicating that they exert control of type I procollagen gene expression at the pretranslational level. We found that both hrIL-1 alpha and beta stimulate synthesis of TIMP, collagenase, PGE2, and growth of fibroblasts in vitro but are not chemotactic for fibroblasts. Although hrIl-1 alpha and beta both are able to stimulate production of PGE2 by fibroblasts, inhibition of prostaglandin synthesis by indomethacin has no measurable effect on the ability of the IL-1s to stimulate cell growth or production of collagen and collagenase. Each of the IL-1s stimulated proliferation and collagen production by fibroblasts to a similar degree, however hrIL-1 beta was found to be less potent than hrIL-1 alpha in stimulating PGE2 production. These observations support the notion that IL-1 alpha and beta may both modulate the degradation of collagen at sites of tissue injury by virtue of their ability to stimulate collagenase and PGE2 production by fibroblasts. Furthermore, IL-1 alpha and beta might also direct reparative functions of fibroblasts by stimulating their proliferation and synthesis of collagen and TIMP.  相似文献   

15.
Tan YR  Qi MM  Qin XQ  Xiang Y  Li X  Wang Y  Qu F  Liu HJ  Zhang JS 《Peptides》2006,27(7):1852-1858
The present study was designed to investigate the role of bombesin receptor subtype 3 (BRS-3) in airway wound repair. The results showed that: (1) There was few expression of BRS-3 mRNA in the control group. In contrast, the expression of BRS-3 mRNA was gradually increased in the early 2 days, and peaked on the fourth day, and then decreased in the ozone-stressed AHR animal. BRS-3 mRNA was distributed in the ciliated columnar epithelium, monolayer columnar epithelium cells, scattered mesenchymal cells and Type II alveolar cells; (2) The wound repair and proliferation of bronchial epithelial cells (BECs) were accelerated in a concentration-dependent manner by BRS-3 activation with P3513, which could be inhibited by PKA inhibitor H89. The study demostrated that activation of BRS-3 may play an important role in wound repair of AHR.  相似文献   

16.
17.
Fibroblasts can synthetize prostaglandins (particularly PGE2) "in vitro" but it still remains unclear what role they play in the regulation of fibroblast proliferation and collagen production. We report here the effect of PGE2 and indomethacin on collagen synthesis by cultured human dermal fibroblasts. PGE2 (range: 1-300 pmoles/ml) and indomethacin (range: 0.0025-1.0 micrograms/ml) did not significantly affect fibroblast collagen production, when added for 24 hours at 37 degrees C to the cultures, in comparison to controls (fibroblasts incubated for 24 hours at 37 degrees C in medium only). Prostaglandins probably modulate collagen synthesis, as described in a previous report, by means their effect on cell proliferation. It appears they do not affect the intracellular mechanism of collagen production.  相似文献   

18.
Adhesion fibroblasts exhibit higher TGF-beta1 and type I collagen expression as compared to normal peritoneal fibroblasts. Furthermore, exposure of normal peritoneal fibroblasts to hypoxia results in an irreversible increase in TGF-beta1 and type I collagen. We postulated that the mechanism by which hypoxia induced the adhesion phenotype is through the production of superoxide either directly or through the formation of peroxynitrite. To test this hypothesis, normal peritoneal and adhesion fibroblasts were treated with superoxide dismutase (SOD), a superoxide scavenger, and xanthine/xanthine oxidase, a superoxide-generating system, under normoxic and hypoxic conditions. Also, cells were treated with peroxynitrite. TGF-beta1 and type I collagen expression was determined before and after all treatments using real-time RT/PCR. Hypoxia treatment resulted in a time-dependent increase in TGF-beta1 and type I collagen mRNA levels in both normal peritoneal and adhesion fibroblasts. Similarly, treatment with xanthine oxidase, to endogenously generate superoxide, resulted in higher mRNA levels of TGF-beta1 and type I collagen in both normal peritoneal and adhesion fibroblasts. In contrast, treatment with SOD, to scavenge endogenous superoxide, resulted in a decrease in TGF-beta1 and type I collagen expression in adhesion fibroblasts to levels seen in normal peritoneal fibroblasts; no effect on the expression of these molecules was seen in normal peritoneal fibroblasts. Exposure to hypoxia in the presence of SOD had no effect on mRNA levels of TGF-beta1 and type I collagen in either normal peritoneal or adhesion fibroblasts. Peroxynitrite treatment alone significantly induced both adhesion phenotype markers. In conclusion, hypoxia, through the production of superoxide, causes normal peritoneal fibroblasts to acquire the adhesion phenotype. Scavenging superoxide, even in the presence of hypoxia, prevented the development of the adhesion phenotype. These findings further support the central role of free radicals in the development of adhesions.  相似文献   

19.
20.
Asthma and chronic obstructive pulmonary disease (COPD) are characterized by chronic airway inflammation and major structural lung tissue changes including increased extracellular matrix (ECM) deposition. Inhaled corticosteroids and long-acting beta(2)-agonists (LABA) are the basic treatment for both diseases, but their effect on airway remodeling remains unclear. In this study, we investigated the effect of corticosteroids and LABA, alone or in combination, on total ECM and collagen deposition, gene expression, cell proliferation, and IL-6, IL-8, and TGF-beta(1) levels by primary human lung fibroblasts. In our model, fibroblasts in 0.3% albumin represented a non-inflammatory condition and stimulation with 5% FCS and/or TGF-beta(1) mimicked an inflammatory environment with activation of tissue repair. FCS (5%) increased total ECM, collagen deposition, cell proliferation, and IL-6, IL-8, and TGF-beta(1) levels. In 0.3% albumin, corticosteroids reduced total ECM and collagen deposition, involving the glucocorticoid receptor (GR) and downregulation of collagen, heat shock protein 47 (Hsp47), and Fli1 mRNA expression. In 5% FCS, corticosteroids increased ECM deposition, involving upregulation of COL4A1 and CTGF mRNA expression. LABA reduced total ECM and collagen deposition under all conditions partly via the beta(2)-adrenergic receptor. In combination, the drugs had an additive effect in the presence or absence of TGF-beta(1) further decreasing ECM deposition in 0.3% albumin whereas counteracting each other in 5% FCS. These data suggest that the effect of corticosteroids, but not of LABA, on ECM deposition by fibroblasts is altered by serum. These findings imply that as soon as airway inflammation is resolved, long-term treatment with combined drugs may beneficially reduce pathological tissue remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号