首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Most plants with fleshy fruits have seeds that are ingested by animals, but a less well-understood mode of seed dispersal involves fleshy fruits containing seeds that are discarded by frugivorous animals because they are too large or toxic to be ingested. We studied the seed dispersal biology of Haemanthus deformis, an amaryllid lily species found in a mosaic of bush clumps in a grassland matrix in South Africa. We asked whether seed dispersal is directed in and among bush clumps and whether germination and survival are greater for seeds dispersed to bush clumps than for those dispersed into grassland. Using camera trapping, we found that fruits are consumed mainly by birds and rodents. The pulp was removed from the seeds which were then discarded without ingestion. While many seeds were dispersed close to the parent plant, most (c. 78.5%) were dispersed further than 1 m away from the parent plant. Longer distance dispersal resulted mainly from birds flying off with fruits in their bill or from rodents engaging in scatter-hoarding behavior. Seedling survival was most successful within bush clumps as compared to grasslands and shade was identified as a primary requirement for seedling survival. Seeds from which the fruit pulp had been removed germinated faster than those in intact fruits. Haemanthus deformis deploys a system of directed seed dispersal, whereby both birds and rodents contribute to the dispersal of seeds within patchy bush clumps that are favorable for seedling survival.  相似文献   

2.
The modes of seed dispersal in the prostrate annual, Chamaesyce maculata, with multiple overlapping generations were investigated. We found that C. maculata has two modes of seed dispersal; autochory in the summer and myrmecochory in the autumn. Seasonally different modes of seed dispersal have not been known in other plant species. The large proportion of seeds produced in the summer was positioned further than the expanse of the parent plants by automatic mechanical seed dispersal. Therefore, autochory would be effective for avoiding competition between parent and offspring plants. No autochory occurred in the seeds produced in the autumn. The seeds of C. maculata without an elaiosome were dispersed by seed-collecting ants in the autumn. Although 18 ant species in total visited the plants of C. maculata at the 50 sites investigated, only two ant species, Tetramorium tsushimae and Pheidole noda frequently carried the seeds of C. maculata. The low frequency of seeds carried out of the nest by P. noda suggests that the workers of P. noda carry the seeds as food into their nest. So, P. noda might be a less effective seed disperser for C. maculata, corresponding to the effectiveness of seed dispersal by harvester ants. However, T. tsushimae ants frequently carried the seeds into and out of their nest, suggesting that T. tsushimae do not regard the seeds of C. maculata as a food resource. Thus, T. tsushimae may be an effective seed disperser for C. maculata.  相似文献   

3.
Dry forests are among the most endangered natural communities in the Hawaiian Islands. Most have been reduced to isolated trees and small forest fragments in which native tree species reproduce poorly. The replacement of native birds by introduced generalists may be contributing to dry forest decline through modification of seed dispersal patterns. To document seed dispersal by introduced birds, we conducted foraging observations on fleshy-fruited trees and measured seed rain under trees and in adjacent open areas for 1 year in a dry forest dominated by native trees. Although trees covered only 15.2 percent of the study area, 96.9 percent of the bird-dispersed seeds were deposited beneath them. The Japanese white-eye (Zosterops japonicus) was the principal dispersal agent. Among bird-dispersed seeds, those of the invasive tree Bocconia frutescens accounted for 75 percent of all seeds collected beneath trees (14.8 seeds/m2/yr) and the invasive shrub Lantana camara accounted for 17 percent. Although nearly 60 percent of the reserve's native woody species possess fleshy fruits, introduced birds rarely disperse their seeds. Native trees accounted for <8 percent of all bird-dispersed seeds and are consequently experiencing dispersal failure by falling directly under parent trees. Smaller-seeded non-native plants, in contrast, may be benefiting from dispersal by introduced birds. Current dispersal patterns suggest that these readily disseminated non-native plants may eventually replace the remaining native flora.  相似文献   

4.
Daniel G. Wenny 《Biotropica》2000,32(2):327-337
Dispersal quality, as estimated by the cumulative effects of dispersal, germination, seed predation, and seedling survival, was examined for Beilschmiedia pendula (Lauraceae) in Monteverde, Costa Rica. I determined the pattern of dispersal by finding seeds deposited by birds, protected the seeds from seed predators with cages to assess germination and seedling survival, and examined seed predation rates with marked seeds. Seed predation, germination, and seedling survival were compared between seeds naturally dispersed by birds and seeds placed at randomly located sites. Approximately 70 percent of seeds dispersed by birds (N= 244) were deposited <10 m from crown edges of fruiting B. pendula trees, although some seeds were dispersed at least 70 m away. Larger seeds were more likely to be dispersed under or close to the parent trees, and larger seeds produced larger seedlings. Seed size was not correlated directly with seedling survival, but larger seedlings at three months were most likely to survive one year. Seed predation by mammals and insects and seedling mortality due to fungal pathogens were concentrated beneath the crowns of parent trees. Seedlings and saplings were more abundant beneath fruiting B. pendula trees, but individuals farther away were taller on average. Thus, dispersal is beneficial for B. pendula, but such benefits appear most pronounced at a small spatial scale; seeds dispersed >30 m from the crown edges actually had a lower probability of survival than those dispersed 10–20 m. Only 10 percent of B. pendula. seeds received high‐quality dispersal in terms of landing in the zone with the highest per seed probability of seedling survival 10–20 m from parental crowns.  相似文献   

5.
Seed dispersal determines a plant’s reproductive success, range expansion, and population genetic structures. Camellia japonica, a common evergreen tree in Japan, has been the subject of recent genetic studies of population structure, but its mode of seed dispersal has been assumed, without detailed study, to be barochory. The morphological and physiological features of C. japonica seeds, which are large and nutritious, suggest zoochorous dispersal, however. We compared actual distances between mother trees and seedlings with distances attributable to gravity dispersion only, to test the zoochory hypothesis of C. japonica. The animals that transport the seeds for caching were identified experimentally. We also examined the extent to which seed dispersal is affected by the behavior of animal vectors. Seed dispersal by Apodemus speciosus was confirmed by taking photographs of animals that were consuming seeds experimentally deposited on the ground. Camellia seeds hoarded by the rodents under the litter or soil were protected from drying. On the basis of microsatellite analysis of maternal tissue from the seed coat, the mother trees of 28 seedlings were identified. Maternity analysis revealed the average seed-dispersal distance from mother trees was 5.8 m±6.0 SD, a distance greater than initial dispersal by gravity alone. These results indicate that C. japonica is a zoochorous species dispersed by A. speciosus. Fifty percent of the seed dispersal occurred from mature evergreen forests to dwarf bamboo thickets. This directional seed dispersal would contribute to range expansion of C. japonica. Home range sizes of A. speciosus were 0.85 ha at most and covered with different types of vegetation, from evergreen forests to grassland. This low specificity of their microhabitat use might enhance seed dispersal to different types of vegetation.All animal experiments complied with Japanese laws.  相似文献   

6.
Seed dispersal influences a wide range of ecological processes. However, measuring dispersal patterns, particularly long‐distance dispersal, has been a difficult task. Marking bird‐dispersed seeds with stable 15N isotopes has been shown to be a user‐friendly method to trace seed dispersal. In this study, we determined whether 15N urea solution could be used to enrich seeds of two common wind‐dispersed plants, Eupatorium glaucescens (Asteraceae) and Sericocarpus tortifolius (Asteraceae). We further tested if the water type (distilled versus tap) in 15N urea solutions influences the level and variability of enrichment of plant seeds, and if increasing spraying frequency per se increases enrichment. Because droughts may lower seed set or kill plants, we wanted to investigate if the additional use of an externally applied anti‐transpirant affects the intake of externally applied 15N into seeds. The results demonstrate that 15N enrichment of seeds can facilitate dispersal experiments with wind‐dispersed plants. The use of distilled water in 15N urea solutions did not increase 15N enrichment compared to tap water. Further, enrichment was more efficient at lower spray frequencies. Both the use of tap water and low frequencies could lower time, effort and project costs. The results suggest that species can be protected from drought using an anti‐transpirant without decreasing the incorporation of 15N into seeds.  相似文献   

7.
Latitude, seed predation and seed mass   总被引:12,自引:0,他引:12  
Aim We set out to test the hypothesis that rates of pre‐ and post‐dispersal seed predation would be higher towards the tropics, across a broad range of species from around the world. We also aimed to quantify the slope and predictive power of the relationship between seed mass and latitude both within and across species. Methods Seed mass, pre‐dispersal seed predation and post‐dispersal seed removal data were compiled from the literature. Wherever possible, these data were combined with information regarding the latitude at which the data were collected. Analyses were performed using both cross‐species and phylogenetic regressions. Results Contrary to expectations, we found no significant relationship between seed predation and latitude (log10 proportion of seeds surviving predispersal seed predation vs. latitude, P = 0.63; R2 = 0.02; n = 122 species: log10 proportion of seeds remaining after postdispersal seed removal vs. latitude, P = 0.54; R2 = 0.02; n = 205 species). These relationships remained non‐significant after variation because of seed mass was accounted for. We also found a very substantial (R2 = 0.21) relationship between seed mass and latitude across 2706 species, with seed mass being significantly higher towards the tropics. Within‐species seed mass decline with latitude was significant, but only about two‐sevenths, as rapid as the cross‐species decline with latitude. Results of phylogenetic analyses were very similar to cross‐species analyses. We also demonstrated a positive relationship between seed mass and development time across ten species from dry sclerophyll woodland in Sydney (P < 0.001; R2 = 0.77; Standardized Major Axis slope = 0.14). These data lend support to the hypothesis that growing period might affect the maximum attainable seed mass in a given environment. Main conclusions There was no evidence that seed predation is higher towards the tropics. The strong relationship between seed mass and latitude shown here had been observed in previous studies, but had not previously been quantified at a global scale. There was a tenfold reduction in mean seed mass for every c. 23° moved towards the poles, despite a wide range of seed mass within each latitude.  相似文献   

8.
Dry forests are among the most diverse, yet threatened, communities in Hawai’i. Dry forests throughout the archipelago suffer from a lack of natural regeneration of trees. Two factors that may limit tree recruitment include poor seed dispersal and seed predation by rodents. Poor or limited dispersal of fleshy-fruited species results in seeds and fruits falling directly under parents. Dispersed and non-dispersed seeds may differ in their vulnerability to predation. We tested effects of seed location (under/away from parent trees) and pulp (presence/absence) on predation of four native species that suffer from limited dispersal and one readily-dispersed alien species in Kanaio Natural Area Reserve, Maui. Three natives (Diospyros sandwicensis, Pleomele auwahiensis, Santalum ellipticum), had significantly more seeds removed under parent trees than in exposed sites away from trees. For the one alien (Bocconia frutescens) and two native trees (D. sandwicensis, P. auwahiensis) that were evaluated, significantly more intact fruits were removed than were cleaned seeds. Presence of teeth marks and gnawed seed husk fragments indicate introduced rodents are destroying many of the seeds they remove. These results suggest that seed predation is disproportionately concentrated among poorly-dispersed seeds and may contribute to recruitment failure.  相似文献   

9.
Seed dispersal and pollen movement by animals have very much in common, though we know so little of either that it is hard to be specific. The focus has been on animals at the fruit crop rather than the seed shadows that they generate (and the fate of those seeds), and on the animals that arrive at flowers rather than where they take the pollen obtained or whence came the pollen they are carrying. 'Seed dispersal' is a word that does not imply the fate of the seed; 'pollination' relates to the fate of the pollen grain, and therefore the two words are not of parallel meaning. In like manner, seeds (the zygote contained within, are different individuals from the parents while pollen is much more like the parent. The following areas are discussed with respect to how seed and pollen movement compare: ability of parent plant to assess success; gene flow; dependency of animals on seeds, pollen and bait; disruption by animal loss; secondary movements; fate of most seeds and pollen; syndromes; selection for maximization of movement; exclusion of 'unwanted' animals; adjustments to the needs of the animals; seeds and pollen as contaminants; necessity of dispersal and outcrossing. We need much more knowledge of what actually is happening in nature with seed and pollen shadows, and improved ability to think like a plant.  相似文献   

10.
I examined the spatial patterns of seed dispersal and postdispersal seed predation of the semidesert perennial Cryptantha flava (A. Nels.) Payson (Boraginaceae) at two sites in north-eastern Utah. Most flowers mature only one seed (nutlet) which is permanently retained within a pubescent calyx. The calyx and enclosed seed abscise from the plant as a unit. These dispersal units are effectively dispersed by wind as evidenced by the highly directional seed shadows and the long distances some of them travel (up to 31.3 m). Potential seed predators at the sites include five species of rodents, of which Peromyscus maniculatus is the most common, and two species of ants, Pogonomyrmex occidentalis and an undescribed species of Conomyrma. There were no strong spatial patterns of postdispersal seed predation. More seeds were removed from dishes placed at the bases of fruiting adults than from dishes ≥ 1.0 m away in one of three experiments. More seeds were removed from under shrubs or clumps of grass than in the open in one of four experiments. After 3–4 days, there was a consistent tendency for more seed removal from high density (75 seeds per .25 m2) quadrats than from low density (75 seeds per 6.25 m2) quadrats, but the difference was not always significant. There was a similar nonsignificant difference between high- and low-density quadrats exposed for 21 days. The pubescent calyx greatly discourages seed predation by ants, and probably also reduces predation by rodents. In addition, by increasing the surface area of the dispersal unit, the calyx may facilitate dispersal by wind.  相似文献   

11.
植物的繁殖体总是面临来自各类生物(如昆虫、脊椎动物、真菌)的捕食风险。因动物捕食引起的种子死亡率影响植物的适合度、种群动态、群落结构和物种多样性的保持。种子被捕食的时间和强度成为植物生活史中发芽速度、地下种子库等特征的主要选择压力,而种子大小、生境类型等因素也影响动物对植物种子的捕食。捕食者饱和现象被认为是植物和种子捕食者之间的高度协同进化作用的结果,是限制动物破坏种子、提高被扩散种子存活率的一种选择压力。大部分群落中的大多数植物种子被动物扩散。种子扩散影响种子密度、种子被捕食率、病原体攻击率、种子与母树的距离、种子到达的生境类型以及建成的植株将与何种植物竞争,从而影响种子和幼苗的存活,最终影响母树及后代植物的适合度。种子被动物扩散后的分布一般遵循负指数分布曲线,大多数种子并没有扩散到离母树很远的地方。捕食风险、生境类型、植被盖度均影响动物对种子的扩散。植物结实的季节和果实损耗的过程也体现了其对扩散机会的适应。许多动物有贮藏植物种子的行为。动物贮藏植物繁殖体的行为,一方面调节食物的时空分布,提高了贮食动物在食物缺乏期的生存概率;另一方面也为种子萌发提供了适宜条件,促进了植物的扩散。于是,植物与贮食动物形成了一种协同进化关系,这种关系可能是自然界互惠关系(mutualism)的一种。影响幼苗存活和建成的因子包括种子贮蒇点的微生境、湿度、坡向、坡度、林冠盖度等。许多果食性动物吃掉果肉后,再将完好的种子反刍或排泄出来。种子经动物消化道处理后,发芽率常有所提高。  相似文献   

12.
Microsatellite analysis was used to examine parentage and spatial distributions of 62 adult bur oaks Quercus macrocarpa, and 100 saplings in a single stand. Using genotypes scored by PCR products at four microsatellite loci, we determined that 94 saplings matched at least one parent in the stand. Saplings often occur as dense clusters of half-sibs around the presumed maternal parent, and only four adults were seed parents to a large proportion of the saplings sampled. A stump apparently was the seed parent of the largest cluster of half-sibs, which occupied a sizeable light gap opened up by the death of their maternal tree. Approximately half of the saplings appeared to have grown from seeds that had not been removed after falling from the tree, and half from seeds that were dispersed beyond the crown of their maternal parent. Long-distance seed dispersal may be more common than has been previously reported. Extremely high levels of long-distance pollination were indicated, and pollen donors within the stand were generally distributed randomly around maternal trees. More than half of the saplings had paternal parents outside of the stand. This study demonstrates the utility of microsatellite analysis for studying mating systems, seed dispersal and seedling establishment in natural plant populations.  相似文献   

13.
Selective pressures on seed size could vary among the different stages of plant life cycles, so no simple relation could explain a priori its evolution. Here, we determined the relationships between seed size and two fitness components—seed dispersal and survival from predation—in a bird-dispersed tree, Crataegus monogyna. We interpret these relationships in relation to the patterns of mass allocation to fruit and seed components. Selection patterns were assessed at two levels (1) selection pressures on the parent tree; comparing seed dispersal efficiency among individual plants and (2) selection pressures at the individual seed level; comparing seed size variation (i) before and after dispersal, and (ii) before and after postdispersal seed predation. Dispersal efficiency (percentage of seed crop dispersed) was positively correlated with fruit mass and fruit width. Differences in crop size did not offset this effect, and larger seeds were overrepresented in the seed rain relative to the seed pool before dispersal. However, the advantage of larger seeds during the dispersal stage was cancelled later by an opposite selection pressure exerted by seed predators. As a result, smaller seeds had a higher probability of surviving postdispersal seed predation, establishing an evolutionary conflict imposed by the need for dispersal and the danger of being predated. Birds and rodents preferentially selected highly profitable fruits and seeds in terms of the relative proportion of their components. Larger fruits had a higher pulp to seed proportion than smaller ones, and all seeds had the same proportion of coat relative to the embryo-plus-endosperm fraction. Hence, although predator pressures were stronger than disperser ones, larger seeds invested proportionally less in structural defense than in dispersal.  相似文献   

14.
15.
The separate contributions of different vectors to net seed dispersal curves of diplochorous systems have rarely been characterised. In Australia, myrmecochory is a common seed dispersal syndrome and in the majority of such systems, seeds are initially dispersed ballistically. We measured ballistic and myrmecochorous seed dispersal distances in relation to canopies of Adriana quadripartita (Euphorbiaceae) and used a simulation model to estimate the net dispersal curve. We also compared seed removal rates and ant abundances under, and outside, plant canopies to examine how foraging patterns by ants may affect net dispersal.Overall ant abundance did not show a significant numerical response to seedfall; however, the abundance of the main seed dispersing ant, Rhytidoponera ‘metallica’ did. Despite this, seed removal rates did not differ significantly between canopy and open locations. Rhytidoponera ‘metallica’ account for 93% of observed seed dispersal events. On average, the ants dispersed seeds 1.54 m and in doing so, moved seed a mean radial distance of 0.76 m away from canopy edges. This contribution to net dispersal distance by ants is considerable since ballistic dispersal moved seeds a median distance of 7.5 cm. Our simulation model indicated that the combination of ballistic and ant seed dispersal is expected to result in seeds being transported a median net radial dispersal distance of 1.05 m from the canopy edge.Thus in this system, an important function of diplochory may simply be to move a higher proportion of seeds from under the canopy of parent plants than is possible by ballistic dispersal alone. This ‘dispersal-for-distance’ may result in reduced parent–offspring competition or may increase the probability that seeds reach rare safe sites for germination and recruitment.  相似文献   

16.
Recognition that tree recruitment depends on the balance between seed arrival and seedling survival has led to a surge of interest in seed‐dispersal limitation and seedling‐establishment limitation in primary forests. Virtually unaddressed are comparisons of this balance in mature and early successional habitats. We assessed seed rain and seedling recruitment dynamics of tree species in primary forest, secondary forest and pasture released from grazing in a tropical agricultural landscape. Seed to seedling ratios (seed effectiveness; Φi) for 43 species in southern Mexico determined differences in the extent to which seeds produced seedlings by habitat, life history, and dispersal mode. Reproductive potential as estimated by the transition from seed rain to seedling recruitment, differed by habitats, and varied dramatically by life history and dispersal mode. Expected recruit densities (Eit) were higher for animal‐dispersed than wind‐dispersed species, and for non‐pioneer than pioneer species. Non‐pioneers and animal‐dispersed species had higher expected relative recruit abundance (εit) in primary forest (median of 4 seeds recruit?1) whereas in secondary forest wind‐dispersed pioneers had the highest expected relative recruit abundance (median of 16 seeds per recruit). In pastures, wind‐dispersed pioneer species were most successful with many more seeds per recruit (median of 291) than both forest habitats. Seeds per recruit (Φi) appeared to decrease with increase in seed mass for 43 species for which data were available (r = –0.55, P < 0.001). This was associated with a negative correlation of Φi with seed size in primary forest (r = –0.50, P = 0.08 for 13 species); Φi was not correlated with seed size in secondary forest (n = 16) or pasture (n = 14). Metrics of seeds per recruit, expected recruit density and expected relative recruit abundance dramatically illustrate differences in barriers to recruitment in successional habitats.  相似文献   

17.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

18.
Tropical forests have been subject to intense hunting of medium and large frugivores that are important in dispersing large-seeded species. It has been hypothesized that in areas with extinction or low abundance of medium and large-bodied animals the density of small rodents may increase. Therefore, this increment in the density of small rodents may compensate for the absence or low abundance of medium and large frugivores on seed removal and seed dispersal. Here, we fill up this gap in the literature by determining if seed removal, seed dispersal, and seed predation by small rodents (spiny rats, Trinomys inheringi and squirrels, Sciurus ingrami) are maintained in defaunated areas. We accessed seed removal, seed dispersal, seed predation, and seedling recruitment of an endemic Atlantic rainforest palm, Astrocaryum aculeatissimum, in a gradient of abundance of agoutis. We found that seed removal, scatter hoarding, and seed predation increase with the abundance of agoutis. In contrast, the proportion of dispersed but non-cached seeds decreased with the abundance of agoutis. We did not find any effect of the abundance of agoutis on seed dispersal distance, but we did find a positive trend on the density of seedlings. We concluded that small rodents do not compensate the low abundance of agoutis on seed removal, scatter hoarding, and seed predation of this palm tree. Moreover, areas in which agoutis are already extinct did not present any seed removal or scatter hoarding, not even by small rodents. This study emphasizes both the importance of agoutis in dispersing seeds of A. aculeatissimum and the collapse in seed dispersal of this palm in areas where agoutis are already extinct.  相似文献   

19.
Vertical seed dispersal, which plays a key role in plant escape and/or expansion under climate change, was recently evaluated for the first time using negative correlation between altitudes and oxygen isotope ratio of seeds. Although this method is innovative, its applicability to other plants is unknown. To explore the applicability of the method, we regressed altitudes on δ18O of seeds of five woody species constituting three families in temperate forests in central Japan. Because climatic factors, including temperature and precipitation that influence δ18O of plant materials, demonstrate intensive seasonal fluctuation in the temperate zone, we also evaluated the effect of fruiting season of each species on δ18O of seeds using generalized linear mixed models (GLMM). Negative correlation between altitudes and δ18O of seeds was found in four of five species tested. The slope of regression lines tended to be lower in late‐fruiting species. The GLMM analysis revealed that altitudes and date of fruiting peak negatively affected δ18O of seeds. These results indicate that the estimation of vertical seed dispersal using δ18O of seeds can be applicable for various species, not just confined to specific taxa, by identifying the altitudes of plants that produced seeds. The results also suggest that the regression line between altitudes and δ18O of seeds is rather species specific and that vertical seed dispersal in late‐fruiting species is estimated at a low resolution due to their small regression slopes. A future study on the identification of environmental factors and plant traits that cause a difference in δ18O of seeds, combined with an improvement of analysis, will lead to effective evaluation of vertical seed dispersal in various species and thereby promote our understanding about the mechanism and ecological functions of vertical seed dispersal.  相似文献   

20.
The key selective pressure shaping the morphology of samaras is seen as enhancing primary wind-borne dispersal from the parent plant to the ground. However, the consequences of the samara wing of primarily wind-dispersed tree species for post-dispersal processes has not been well studied. We explored whether the presence of this wing in Acer pseudoplatanus either deters or promotes predation after dispersal, either by increasing the time and energy required to predate the seed or by increasing the seed's visibility to predators. We found that wing-removed fruits were preferred, suggesting that the presence of samaras makes seed handling more expensive for granivores. Further, we found that fewer seeds were consumed from treatments that contained the most winged seeds, thus there was no evidence of the samaras making seed finding easier for granivores. We conclude that the presence of the wing may offer an anti-predatory benefit as well as aiding primary dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号