首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

2.
Post‐dispersal, epiphyte seed predation is poorly documented. Our study on the in situ germination of two Tillandsia species in a deciduous forest in Yucatan, Mexico showed an average post‐dispersal seed predation rate by the Yucatan deer mouse (Peromyscus yucatanicus) of 90%. Post‐dispersal predation was thus more limiting than drought.  相似文献   

3.
Understanding the mutualistic services provided by species is critical when considering both the consequences of their loss or the benefits of their reintroduction. Like many other Pacific islands, New Zealand seed dispersal networks have been changed by both significant losses of large frugivorous birds and the introduction of invasive mammals. These changes are particularly concerning when important dispersers remain unidentified. We tested the impact of frugivore declines and invasive seed predators on seed dispersal for an endemic tree, hinau Elaeocarpus dentatus, by comparing seed dispersal and predation rates on the mainland of New Zealand with offshore sanctuary islands with higher bird and lower mammal numbers. We used cameras and seed traps to measure predation and dispersal from the ground and canopy, respectively. We found that canopy fruit handling rates (an index of dispersal quantity) were poor even on island sanctuaries (only 14% of seeds captured below parent trees on islands had passed through a bird), which suggests that hinau may be adapted for ground‐based dispersal by flightless birds. Ground‐based dispersal of hinau was low on the New Zealand mainland compared to sanctuary islands (4% of seeds dispersed on the mainland vs. 76% dispersed on islands), due to low frugivore numbers. A flightless endemic rail (Gallirallus australis) conducted the majority of ground‐based fruit removal on islands. Despite being threatened, this rail is controversial in restoration projects because of its predatory impacts on native fauna. Our study demonstrates the importance of testing which species perform important mutualistic services, rather than simply relying on logical assumptions.  相似文献   

4.
Characterization of the ecology of endangered timber species is a crucial step in any forest management strategy. In this study, we described the animal communities involved in seed dispersal and predation of a high‐value timber species Guibourtia tessmannii (Fabaceae; Detarioideae), which is newly listed on Appendix II of CITES. We compared the animal communities between two forest sites (Bambidie in Gabon and Ma'an in Cameroon). A total of 101 hr of direct observations and 355 days of camera trapping revealed that a primate (Cercopithecus nictitans nictitans) and a hornbill (Ceratogymna atrata) were important seed dispersers in Gabon. Conversely, a greater presence of a rodent (Cricetomys emini), which could act both as predator and disperser, was observed in Cameroon. This study suggests that animal communities involved in seed dispersal of G. tessmannii may vary depending on environmental conditions and anthropogenic impacts. However, further studies are needed to properly identify the factors involved in seed dispersal and predation of G. tessmannii.  相似文献   

5.
Large frugivores play an important role as seed dispersers and their extinction may affect plant regeneration. The consequences of such extinctions depend on the likelihood of other species being functionally redundant and on how post‐dispersal events are affected. We assess the functional redundancy of two seed dispersers of the Atlantic Forest, the muriqui (Brachyteles arachnoides) and the tapir (Tapirus terrestris) through the comparison of their seed dispersal quality, taking into account post‐dispersal events. We compare tapirs and muriquis for: (1) the dung beetle community associated with their feces; (2) the seed burial probability and burial depth by dung beetles; and (3) the seed mortality due to predators or other causes according to burial depth. We determine how seed burial affects seed dispersal effectiveness (SDE) and compare the dispersal quality of four plant species dispersed by these frugivores. Muriqui feces attract 16‐fold more dung beetles per gram of fecal matter and seeds experience 10.5‐fold more burial than seeds in tapir feces. In both feces types, seed mortality due to predation decreases with burial depth but seed mortality due to other causes increases. Total seed mortality differ within plant species according to the primary disperser. Therefore, the effect of seed burial on SDE varies according to the plant species, burial depth, and primary disperser. As tapirs and muriquis differently affect the seed fate, they are not functionally redundant. Since the effect of the primary disperser persists into the post‐dispersal events, we should consider the cascading effects of these processes when assessing functional redundancy.  相似文献   

6.
Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant–plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.  相似文献   

7.
In Neotropical forests, mammals act as seed dispersers and predators. To prevent seed predation and promote dispersal, seeds exhibit physical or chemical defenses. Collared peccaries (Pecari tajacu) cannot eat some hard seeds, but can digest chemically defended seeds. Central American agoutis (Dasyprocta punctata) gnaw through hard‐walled seeds, but cannot consume chemically defended seeds. The objectives of this study were to determine relative peccary and agouti abundances within a lowland forest in Costa Rica and to assess how these two mammals affect the survival of large seeds that have no defenses (Iriartea deltoidea, Socratea exorrhiza), physical defenses (Astrocaryum alatum, Dipteryx panamensis), or chemical defenses (Mucuna holtonii) against seed predators. Mammal abundances were determined over 3 yrs from open‐access motion‐detecting camera trap photos. Using semi‐permeable mammal exclosures and thread‐marked seeds, predation and dispersal by mammals for each seed species were quantified. Abundances of peccaries were up to six times higher than those of agoutis over 3 yrs, but neither peccary nor agouti abundances differed across years. Seeds of A. alatum were predominantly dispersed by peccaries, which did not eat A. alatum seeds, whereas non‐defended and chemically defended seeds suffered high levels of predation, mostly by peccaries. Agoutis did not eat M. holtonii seeds. Peccaries and agoutis did not differ in the distances they dispersed seeds. This study shows that seed fates are contingent upon many factors such as seed defenses, frugivore–granivore abundances, and seed‐handling capabilities. Mammal–seed interactions are complex; the outcomes of these interactions depend on the inherent characteristics of seeds and their potential dispersers.  相似文献   

8.
Pre‐dispersal seed predation can greatly reduce crop size affecting recruitment success. In addition, non‐fatal damage by seed predators may allow infection by fungi responsible for post‐dispersal seed losses. The objectives of this study were (1) to quantify pre‐dispersal seed predation and fungal infection in a Neotropical tree species, Luehea seemannii, that produces dehiscent fruits and wind‐dispersed seeds, and (2) to link pre‐dispersal effects on seed quality to seed survival in the soil. To examine how seed predators and fungi influence seed losses, mesh exclosures, fungicide, and the combination of both treatments were applied to separate branches in the canopy of trees in Gamboa and Parque Natural Metropolitano (PNM), Panama. To determine if treatments affect seed viability and survival in the soil, half of the seeds collected from each treatment were buried for 4 weeks in forest soils and subsequently allowed to germinate before and after the breaking of dormancy. Overall, 24 percent of developing fruit were lost to insect attack. In contrast, fungi infected only 3 percent of seeds at the pre‐dispersal stage. For seeds germinated directly after collection, fungicide significantly increased germination in the wetter site (Gamboa) but decreased germination in the drier site (PNM). The pre‐dispersal insect exclosure treatment increased the fraction of seeds that remained dormant after burial in the soil. This result suggests that exposure to insect predators may cause physical damage to seeds that results in the loss of physical dormancy but does not necessarily increase the susceptibility of seeds to pathogen attack in the soil.  相似文献   

9.
Aim We estimated the patterns of seed deposition provided by the eyed lizard, Timon lepidus, and evaluated whether these patterns can be generalized across plant species with different traits (fruit and seed size) and spatial distributions. Location Monteagudo Island, Atlantic Islands National Park (north‐western Spain). Methods We radio‐tracked seven lizards for 14 days and estimated their home ranges using fixed kernels. We also geo‐referenced all fruit‐bearing individuals of four plant species dispersed by eyed lizards in the study area (Corema album, Osyris alba, Rubus ulmifolius and Tamus communis), measured the passage time of their seeds through the lizard gut, and estimated seed predation in four habitats (bare sand, grassland, shrub and gorse). Seed dispersal kernels were estimated using a combination of these data and were combined with seed predation probability maps to incorporate post‐dispersal seed fate (‘seed survival kernels’). Results Median seed gut‐passage times were around 52–98 h, with maximum values up to 250 h. Lizards achieved maximum displacement in their home ranges within 24–48 h. Seed predation was high (80–100% of seeds in 2 months), particularly under Corema shrub and gorse. Seed dispersal kernels showed a common pattern, with two areas of preferential seed deposition, but the importance of these varied among plant species. Interspecific differences among dispersal kernels were strongly reduced by post‐dispersal seed predation; hence, seed survival kernels of the different plant species showed high auto‐ and pairwise‐correlations at small distances (< 50 m). As a result, survival to post‐dispersal seed predation increased with dispersal distance for O. alba and T. communis, but not for C. album. Main conclusions Seed dispersal by lizards was determined primarily by the interaction between the dispersers’ home ranges and the position of the fruit‐bearing plants. As a result, seed rain shared a common template, but showed considerable variation among species, determined by their specific spatial context. Seed predation increased the spatial coherence of the seed rain of the different species, but also resulted in contrasting relationships between seed survival and dispersal distance, which may be of importance for the demographic and evolutionary processes of the plants.  相似文献   

10.
Gynodioecy, the co‐occurrence of hermaphrodite and female individuals within a species, is maintained by differential reproductive success between sexes. Recently, researchers recognized that not only pollinators but also herbivores are important agents in the evolution and maintenance of gynodioecy, when herbivory is hermaphrodite biased. In this study, we investigated whether there is hermaphrodite‐biased herbivory in a gynodioecious plant, Dianthus superbus var. longicalycinus, and if so, what floral traits influenced hermaphrodite‐biased herbivory. We measured flower morphology (flower diameter, calyx tube length, corolla height and petal width) and phenology of flowers of female individuals, hermaphrodites and gynomonoecious individuals in a natural population. We also investigated seed predation and predator species. At the study site, Sibinia weevils (Curculionidae; Coleoptera) and Coleophora moths (Coleophoridae; Lepidoptera) were common pre‐dispersal seed predators in this species. The weevil appeared early in the flowering season, and weevil predation correlated with flower phenology. Because female individuals did not flower early in the season, weevil predation was less frequent in female individuals. Moth predation correlated with calyx length. The calyx length of flowers of female individuals was smaller than those of hermaphrodites, but a direct comparison of moth predation rates failed to find a significant difference among sex morphs. We found that the two seed predators had different effects on floral traits in D. superbus var. longicalycinus. We suggest that weevil predation contributes to the maintenance of gynodioecy because female individuals successfully escaped weevil predation by flowering late. It remains unclear why flower phenology is different among sex morphs.  相似文献   

11.
Many species of Dipterocarpaceae and other plant families reproduce synchronously at irregular, multi‐year intervals in Southeast Asian forests. These community‐wide general flowering events are thought to facilitate seed survival through satiation of generalist seed predators. During a general flowering event, closely related Shorea species (Dipterocarpaceae) stagger their flowering times by several weeks, which may minimize cross pollination and interspecific competition for pollinators. Generalist, pre‐dispersal seed predators might also track flowering hosts and influence predator satiation. We addressed the question of whether pre‐dispersal seed predation differed between early and late flowering Shorea species by monitoring flowering, fruiting and seed predation intensity over two general flowering events at the Pasoh Research Forest, Malaysia. Pre‐dispersal insect seed predators killed up to 63 percent of developing seeds, with Nanophyes shoreae, a weevil that feeds on immature seeds being the most important predator for all Shorea species. This weevil caused significantly greater pre‐dispersal seed predation in earlier flowering species. Long larval development time precluded oviposition by adults that emerged from the earliest flowering Shorea on the final flowering Shorea. In contrast, larvae of weevils that feed on mature seeds before seed dispersal (Alcidodes spp.), appeared in seeds of all Shorea species almost simultaneously. We conclude that general flowering events have the potential to satiate post‐dispersal seed predators and pre‐dispersal seed predators of mature fruit, but are less effective at satiating pre‐dispersal predators of immature fruit attacking early flowering species.  相似文献   

12.
13.
Forest fragmentation is pervasive in tropical landscapes, and one pathway by which fragmentation may negatively impact populations is via edge effects. Early life‐stages are particularly important for species regeneration as they act as bottlenecks, but how edge effects may act differentially on different life‐stages is unknown. This study evaluated edge effects on multiple early life‐stages of a currently common animal‐dispersed, shade‐tolerant tree Tapirira mexicana (Anacardiaceae). The study was conducted in tropical premontane wet forest fragments in a highly deforested region of Costa Rica. The stages assessed were pre‐dispersal predation, primary dispersal, post‐dispersal predation, secondary dispersal, ex situ germination, in situ seed longevity, first and second year seedling abundance, second year seedling survivorship, and basal diameter growth. Results showed that impacts of edge effects were not equal across stages, but were limited to specific stages and times. One stage which may act as a bottleneck for species regeneration was pre‐dispersal predation. Over 60 percent of the seeds were predated by larvae, and predation was higher near the edge than interior habitat. Seeds lost viability within 10 d in the forest. Germination to first year seedling stage was also lower near edges, but such effect was eliminated within a year after that. Primary dispersal, seedling survivorship, and growth were not affected by proximity to edges, and both secondary dispersal and post‐dispersal predation were rare. This study demonstrates that current population abundance may not guarantee future species persistence and the importance of considering multiple life‐stages for a comprehensive assessment of forest fragmentation effects on species regeneration.  相似文献   

14.
Seed dispersal and predation play important roles in plant life history by contributing to recruitment patterns in the landscape. Mast-seeding – extensive synchronized inter-annual variability in seed production – is known to influence the activity of acorn consumers at source trees, but little is known about its effect on post-dispersal predation. We conducted a planting experiment over three years to investigate the relationship between habitat-level post-dispersal predation and landscape-wide acorn production of three sympatric oak species (Quercus spp.). We measured post-dispersal predation in three oak-dominated habitats – savanna (under Q. lobata), forest edge (under Q. agrifolia), and woodland (under Q. douglasii) – as well as in chaparral and open fields. Overall, landscape-level predation was similarly high among study years, averaging 61.4%. Neither species nor mass of planted acorns affected predation. Habitat had a significant effect on post-dispersal predation risk with acorns disappearing most rapidly in chaparral and least rapidly in woodlands. However, a significant interaction between year and habitat (Z = −4.5, P < 0.001) showed that the hierarchy of predation risk among habitats was inconsistent among years. Using annual acorn census data from local populations of each oak species, we found that predation risk in oak-dominated habitats was significantly and positively related to acorn production of the overstory species (Z = −9.53, P = 0.009). Our findings add to growing evidence that seed dispersal, predation, and regeneration are context-dependent on annual variation in community-level seed production, and we discuss the potential consequences of these dynamics on oak recruitment and animal behavior.  相似文献   

15.
García D  Obeso JR  Martínez I 《Oecologia》2005,144(3):435-446
We investigated the role of seed predation by rodents in the recruitment of the fleshy-fruited trees Taxus baccata, Ilex aquifolium and Crataegus monogyna in temperate secondary forests in NW Spain. We measured the densities of dispersed seeds, early emerged seedlings, established recruits and adults, at four sites over a period of 2 years. Seed predation among species was compared by seed removal experiments and analysis of rodent larder-hoards. The three species differed markedly in local regeneration patterns. The rank order in the seed rain following decreasing seed density was Ilex, Taxus and Crataegus. However, Crataegus established 3.3 times more seedlings than Taxus. For all species, there was a positive linear relationship between the density of emerged seedlings and seed density, suggesting that recruitment was seed- rather than microsite-limited. A consistent pattern of seed selection among species was exerted by rodents, which preferred Taxus and, secondarily, Ilex seeds to Crataegus seeds. Predation ranking was the inverse of that of seed protection against predators, measured as the mass of woody coat per mass unit of the edible fraction. Recruitment potential, evaluated as the ratio of seedlings to seeds, was negatively related to seed predation, with the rank order Crataegus > Ilex > Taxus. The selective early recruitment limitation exerted by predation may have a demographic effect in the long term, as judged by the positive relationship between early seedling emergence and the density of established recruits. By modulating the pre-emptive competition for seed safe sites, rodents may preclude the progressive exclusion of species that produce low numbers of seeds (i.e. Crataegus) by those dominant in seed number (i.e. Ilex, Taxus), or at least foster the evenness for site occupation among seedlings of different species.  相似文献   

16.
Abstract The intensity of seed predation the invasive tropical legume Leucaena leucocephala by the bruchid Acanthoscelides macropthalmus was investigated in south‐eastern Queensland, Australia. The number of seeds damaged by A. macropthalmus as a proportion of total seeds available was found to increase the longer the pods remained on the tree. Seed predation ranged from a mean of 10.75% of seeds on pods that remained on the plant for 1 month and increased to 53.54% for pods that remained of the plant for 4 months. The low bruchid populations at high pod densities results in ‘predator satiation’. However, pods dehisce over time and the proportion of pods available over time to the bruchid correspondingly declines. By the time bruchid densities build up, most pods have dehisced and the seeds consequently escape predation. As a result the number of seeds lost to bruchid damage increases only marginally over time. Despite the levels of seed predation observed over the course of the study, the number of seeds in the soil seedbank almost doubled over time increasing from 8.5 seeds m?3 to 15.5 seeds m?3 over a 4‐month period. Levels of seed predation and addition of seeds to the soil seedbank were not correlated. The taxonomic (subspecies) status and apparency of host plants as measured by plant and patch traits (average plant height, density of podding plants and patch size) did not influence levels of seed predation. Pre‐dispersal seed predation studies need to take into account the pod/seed retention behaviour of the plant. The ability of the bruchid to regulate the invasiveness of Leucaena through influencing its demography is likely to be diminished if the insect populations cannot increase rapidly enough to use the seeds before pod dehiscence.  相似文献   

17.
Most seed predation studies focus on either pre- or post-dispersal predation and may therefore underestimate the role of predation in regulating plant populations. We therefore estimated total seed predation of an invasive tree, mesquite (Leguminoseae: Prosopis spp.), by examining the entire seed pool from tree to seed bank. The spatio-temporal dynamics of total seed predation was examined by sampling across its Australian distribution and through time. The main predator was a host-specialist multivoltine beetle, Algarobius prosopis L. (Bruchidae), previously introduced as a biocontrol agent. Seed predation exceeded 20% in all seed stages (in pods on and off the tree, and seeds within woody endocarps (capsules) and free seeds on and in the ground) but was consistently highest in capsules on the ground (up to 90%). Pre-dispersal predation contributed little. Total seed predation rates were primarily determined by predation rates on the most persistent seed stage, in this case fallen pods if only pods are considered and seeds in capsules for the total seed pool. This pattern was consistent across the surveyed taxa, regions, years and seasonally. Predation rate was relatively unaffected by seed density, potentially because densities were always low (<150 seeds m−2). Average total seed predation within a region reached 55%, but we conclude that any population regulation of mesquite by seed predation will principally be through reduced seed bank persistence. Our results highlight the need to consider the entire seed pool, especially the often cryptic and overlooked long-lived stages, when determining seed loss to predation and its likely population consequences.  相似文献   

18.
Post‐dispersal seed predation is a key process determining the variability in seed survival in forests, where most seeds are handled by rodents. Seed predation is thought to affect seedling regeneration, colonization ability and spatial distribution of plants. Basic seed traits are the essential factors affecting rodent foraging preferences and thus seed survival and seedling recruitment. Many studies have discussed several seed traits and their effects upon seed predation by rodents. However, the results of those previous studies are usually equivocal, likely because few seed traits and/or plant species tend to be incorporated into these studies. In order to elucidate the relationships between seed predation and seed traits, we surveyed the predation of 48 600 seeds in a natural pine forest, belonging to 30 species, for three consecutive years. The results demonstrated that: (i) seed size and seed coat hardness did not significantly affect seed predation; (ii) total phenolics had a negative effect upon seed predation; (iii) positive effects of nitrogen content upon seed predation were found. From our study, it seems that the better strategy to prevent heavy predation is for plants to produce seeds with higher total phenolics content rather than physical defenses (i.e. hard seed coat) or larger seeds. Additionally, rodent foraging preference may depend more on Nitrogen content than other nutrient content of seeds.  相似文献   

19.
Geographical gradients in seed mass in relation to climate   总被引:5,自引:0,他引:5  
Aim To determine whether latitudinal and longitudinal gradients in seed mass are related to variation in climatic features including temperature, solar radiation and rainfall. Location Australia. Methods Seed mass was estimated from over 1600 provenances covering the latitudinal and longitudinal extents of 34 perennial Glycine taxa in Australia. Climatic data were obtained from ANUCLIM 5.1 for collection locations based on long‐term meteorological records across Australia. These climatic data were subject to principal components analysis to extract three components as climatic indices. Generalized linear models were used in three separate sets of analyses to evaluate whether seed mass–latitude and seed mass–longitude relationships persisted after taking climatic variation into account. First, relationships were examined across species in analyses that did not explicitly consider phylogenetic relationships. Secondly, phylogenetic regressions were performed to examine patterns of correlated evolutionary change throughout the Glycine phylogeny. Within‐species analysis was also performed to examine consistency across different taxonomic levels. Results Geographical variation in seed mass among species was related primarily to temperature and solar radiation, while rainfall was much less influential upon seed mass. Partialing out the influence of temperature and solar radiation in models resulted in the disappearance of significant seed mass–latitude and seed mass–longitude relationships. Patterns within species were generally consistent with patterns among species. However, in several species, factors additional to these climatic variables may contribute to the origin and maintenance of geographical gradients in seed mass, as significant seed mass–latitude and seed mass–longitude relationships remained after controlling for the influence of climatic variables. Main conclusions Our empirical results support the hypotheses that (1) seed mass is larger at low latitudes and in the interior of the Australian continent due to increased metabolic costs at high temperatures, and that (2) higher levels of solar radiation result in an increase in the availability of photosynthate, which in turn leads to an increase in biomass for the production of large seeds. In effect, our findings show that greater energy is available precisely where needed, that is, where high temperatures require large seed mass on the basis of metabolic requirements.  相似文献   

20.
In patch‐occupancy models for vegetation, propagule output per area occupied is a key species trait, influencing the potential to colonize vacant patches, and hence species dynamics and coexistence. We estimated seed output across a range of species and quantified its relationship to seed dry mass, seed N and P content, and accessory costs in fruiting structures. Fruiting and seed production data were obtained for 47 woody perennial species, spanning an almost 3000‐fold range of seed mass, over a period of one year in Ku‐ring‐gai Chase National Park, New South Wales, Australia. Seed output was measured as numbers per m2 canopy outline and per m2 leaf area.
Of cross‐species variation in seed output per m2 canopy outline per year, 72% could be predicted from seed mass alone, with a directly inverse relationship (log‐log slope not significantly different from ?1). Seed output per m2 leaf area could be predicted somewhat more tightly (75%), indicating leaf area per canopy outline area accounted for some cross‐species variation. Reproductive production per m2 occupied per year varied much less than seed mass and accounted for the remaining variation in seed output. Although accessory costs were about equal in magnitude to seed mass as a component of aggregate investment per seed, they were strongly correlated with seed mass, and consequently did not add substantially to the predictive power.
Total mass of N or P per seed were found to be slightly but significantly better predictors of seed output variation than dry seed mass (83% and 78%, respectively). This supports the idea that mineral nutrients are a more fundamental currency for seed production than dry mass. Seed mass, whether measured as dry mass or as N or P, appears to be the principal driver of variation in seed output per m2 occupied, and consequently is among the most important dimensions of ecological variation across coexisting species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号